上海交通大学学报(自然版) ›› 2013, Vol. 47 ›› Issue (11): 1717-1722.

• 能源与动力工程 • 上一篇    下一篇

基于热化学再吸附变温原理的低品位热能升温储能特性

闫霆1,李卉2,马良1,王如竹1,李廷贤1
  

  1. (1.上海交通大学  机械与动力工程学院, 上海 200240;2.中国船舶重工集团公司第704研究所, 上海 200031)
  • 收稿日期:2013-03-28
  • 基金资助:

    国家自然科学基金资助项目(51276211)

Integrated Energy Storage and Energy Upgrade of Low-Grade Thermal Energy Based on Thermochemical Resorption Heat Transformer

YAN Ting1,LI Hui2,MA Liang1,WANG Ruzhu1,LI Tingxian1
 
  

  1. (1. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China; 2. No.704 Research Institute, China Shipbuilding Industry Corporation, Shanghai 200031, China)
  • Received:2013-03-28

摘要:

基于热化学再吸附变温原理,提出并实施了一种以低品位热能升温储能为目的的热力循环,并对其循环特性及储能供能升温性能进行了理论分析.在此基础上,采用吸附储能工质对MnCl2NaBrNH3研究了热化学再吸附升温储能特性.结果表明:利用固气可逆化学反应过程中热能与化学吸附势能的相互转化可实现热能的高效储存,采用热化学再吸附变温技术在实现热能储存的同时还可有效实现低品位热能的能量品位提升,从而可为低品位热能的高效储存及利用提供新的思路.当储能阶段输入温度为128 °C时,根据外界不同温级热能的需求,释能阶段输出温度提升至140 °C和144 °C时,对应的储热效率分别为0.21和0.11,对应的效率分别为0.25和0.13,且热化学升温幅度越大,储能效率越低.

关键词: 能量储存, 热化学再吸附, 能量品位提升, 热变温

Abstract:

A solid-gas thermochemical resorption heat transformer cycle was proposed for the integrated energy storage and energy upgrade of lowgrade thermal energy in this paper. The working characteristic of the proposed cycle was analyzed theoretically and the performance of the energy storage system was investigated experimentally using a sorption working pair MnCl2-NaBr-NH3. The research results show that the thermal energy can be stored in the form of chemical potential resulting from the reversible thermochemical resorption processes of the working pair. The integrated energy storage and energy upgrade of low-grade thermal energy is achieved simultaneously by performing the presented solidgas thermochemical resorption heat transformer. The advanced thermochemical resorption energy storage technology can provide an effective method for the high-efficient utilization of lowgrade thermal energy. The thermal energy can be effectively upgraded according to the heating demand of external users at different working temperatures. For example, at a heat input temperature of 128 °C during the energy storage phase using a sorption working pair MnCl2-NaBr-NH3, the heat output temperature can reach 140 °C and 144 °C after energy upgrade during the energy supply phase. The corresponding thermal energy storage efficiency is 0.21 and 0.11, and the exergy efficiency is 0.25 and 0.13, respectively. Moreover, the energy storage efficiency decreases with the increase of the temperature lift of low-grade thermal energy.
 

Key words: energy storage, thermochemical resorption, energy upgrade, heat transformer

中图分类号: