[1]Tenenbaum J B, Silva V, Langford J C. A global geometric framework for nonlinear dimensional reduction [J]. Science, 2000, 290: 23192323. [2]Wen G, Jiang L, Wen J. Using locally estimated geodesic distance to optimize neighbourhood graph for isometric data embedding [J]. Pattern Recognition, 2008, 41(7): 22262236. [3]Choi H, Choi S. Robust kernel isomap [J]. Pattern Recognition, 2007, 40(3): 853862. [4]Zhang Z, Chow T, Zhao M. MIsomap: Orthogonal constrained marginal isomap for nonlinear dimensionality reduction [J]. IEEE Trans on Cybernetics, 2013, 43(1):180191. [5]Law M, Jain A K. Incremental nonlinear dimensionality reduction by manifold learning [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(3): 377391. [6]Zhao D, Yang L. Incremental isometric embedding of highdimensional data using connected neighborhood graphs [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(1):86–98. [7]Gao X, Liang J. The dynamical neighborhood selection based on the sampling density and manifold curvature for isometric data embedding [J]. Pattern Recognition Letters, 2010, 32: 202209. [8]Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the nystrom method [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(2):214–225. [9]Zhang Z, Wang J, Zha H. Adaptive manifold learning [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(2): 253265. |