上海交通大学学报(自然版) ›› 2013, Vol. 47 ›› Issue (07): 1032-1035.

• 自动化技术、计算机技术 • 上一篇    下一篇

模糊决策粗糙集模型及其属性约简

王莉1,2,周献中1,李华雄1   

  1. (1.南京大学 工程管理学院,南京 210093; 2.南京工业大学 自动化与电气工程学院,南京 211816)
     
  • 收稿日期:2012-07-02 出版日期:2013-07-30 发布日期:2013-07-30
  • 基金资助:

    国家自然科学基金资助项目(70971062),东南大学复杂工程系统测量与控制教育部重点实验室开放课题基金项目(2010A004)

Fuzzy Decision-theoretic Rough Set Model and Its Attribute Reduction

WANG Li1,2,ZHOU Xianzhong1,LI Huaxiong1
  

  1. (1.School of Engineering and Management, Nanjing University, Nanjing 210093, China; 2.School of Automation and Electrical Engineering, Nanjing University of Technology,Nanjing 211816, China)
  • Received:2012-07-02 Online:2013-07-30 Published:2013-07-30

摘要:

决策粗糙集基于严格的不可分辨等价关系,只能适用于离散型数据,文中研究了一种新的模糊决策粗糙集模型及相应的属性约简算法.该模型将不可分辨等价关系放松为高斯核模糊T-等价关系,从模糊隶属度角度定义了条件概率,能够直接对数值型数据进行属性约简.利用UCI标准数据集,将该模型与Pawlak经典粗糙集、决策粗糙集在属性约简能力上进行比较,仿真实验结果表明,该模型具有较好的性能.
 
 

关键词: 模糊决策粗糙集, 条件概率, 数值型属性, 属性约简

Abstract:

The DTRS is based on strict indiscernibility relation, therefore, it can only be applied to discretized data. In consequence, a fuzzy decision-theoretic rough set(FDTRS) model and a forward greedy attribute reduction algorithm were proposed based on the FDTRS model. The FDTRS model generalizes the indiscernibility relation to fuzzy T-equivalence relations based on Gaussian kernel and defines the conditional probability from the perspective of degree of fuzzy membership. The FDTRS can deal with numerical data directly. Four UCI data sets were used to compare the performance of the FDTRS with Pawlak rough set and decision-theoretic rough set on attribute reduction. Experimental results help quantify the performance of the FDTRS.
 

Key words: fuzzy decision-theoretic rough set, conditional probability, numerical attribute, attribute reduction

中图分类号: