上海交通大学学报(自然版) ›› 2013, Vol. 47 ›› Issue (04): 607-612.

• 自动化技术、计算机技术 • 上一篇    下一篇

一种改进的基于全变差范数图像融合方法

 郝珉慧, 刘哲, 张永亮, 张鹤妮   

  1. (西北工业大学 理学院, 西安 710129)
  • 收稿日期:2012-05-07 出版日期:2013-04-28 发布日期:2013-04-28
  • 基金资助:

    国家自然科学基金 (61071170)资助项目,教育部新世纪优秀人才支持计划资助项目

An Improved Total Variation-Based Image Fusion Algorithm  

 HAO  Min-Hui, LIU  Zhe, ZHANG  Yong-Liang, ZHANG  He-Ni   

  1. (School of Science,Northwestern Polytechnical University, Xi’an 710129, China)
  • Received:2012-05-07 Online:2013-04-28 Published:2013-04-28

摘要: 针对基于全变差范数图像融合方法在多聚焦图像融合中产生分块效应的缺陷,提出将区域的特征表示与主成分分析思想相结合的改进算法,解决了单独块变换造成的图像分块效应问题.实验结果表明,改进算法能有效地消除分块效应,且针对含噪图像,其融合效果明显优于离散小波方法.   

关键词: 图像融合, 全变差范数, 多聚焦图像, 分块效应

Abstract: Considering the total variation-based algorithm for image fusion has block effects when fusing multi-focus images, the notion of feature representation in conjunction with principal component analysis was used for improvement. The improved approach prevents independent block transform from happening. The experimental results show that the proposed algorithm can resolve the problem of block effects efficiently, and it also outperforms the discrete wavelet transform based algorithm when focusing on noisy image. Key words:

Key words: image fusion, total variation norm, multi-focus images, block effect

中图分类号: