上海交通大学学报(自然版) ›› 2013, Vol. 47 ›› Issue (02): 187-192.

• 数理科学和化学 • 上一篇    下一篇

特大增量步算法在板分析中的应用

 贾红学a, 龙丹冰a, 刘西拉b   

  1. (上海交通大学 a. 工程力学系; b. 土木工程系, 上海 200240)  
  • 收稿日期:2012-03-07 出版日期:2013-02-28 发布日期:2013-02-28
  • 基金资助:

    国家自然科学基金资助项目(10872128)

Application of Large Increment Method in Plate Analysis

 JIA  Hong-Xue-a, LONG  Dan-Bing-a, LIU  Xi-La-b   


  1. (a. Department of Engineering Mechanics; b. Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China)
  • Received:2012-03-07 Online:2013-02-28 Published:2013-02-28

摘要: 基于特大增量步算法(LIM)建立了以力为变量的Mindlin-Reissner型矩形板单元,将LIM应用于中厚板问题上,同时给出算例进行分析.通过与精确解和传统的位移法有限元法的结果比较,表明LIM在求解中厚板和薄板问题时有较好的收敛性和准确性,而且在求解薄板问题时不会存在剪切闭锁.    

关键词: 特大增量步算法, 板单元, 中厚板, 位移法有限元法, 剪切闭锁

Abstract: A rectangular Mindlin-Reissner plate element with the forces unknown was developed based on the large increment method (LIM). In the present paper, The plate element was developed to analyze moderately thick plates using LIM. Some numerical examples were presented and the results were compared with the exact solutions and the solutions from conventional displacement-based finite element methods. The convergence and accuracy of the forcebased plate element using LIM for analyzing the moderately thick plates and thin plate were furthermore verified, and it is also shown that the shear locking for thin plate analysis can be prevented.  

Key words: large increment method, plate element, moderately thick plates, displacementbased finite element method, shear locking

中图分类号: