[1]Wang L Y, Zhao W G, Liu Y. Rolling bearing fault diagnosis based on wavelet packetneural network characteristic entropy[J]. Advanced Materials Research, 2010, 108111: 10751079.[2]郭磊,陈进,朱义,等.小波支持向量机在滚动轴承故障诊断中的应用[J]. 上海交通大学学报, 2009, 43(4): 678682.GUO Lei, CHEN Jin, ZHU Yi, et al. Application of wavelet support vector machine in rolling bearing fault diagnosis [J]. Journal of Shanghai Jiaotong University, 2009, 43(4): 678682.[3]姜万录, 牛慧峰, 刘思远. 免疫支持向量机复合故障诊断方法及试验研究[J]. 振动与冲击, 2011, 30(6): 176180, 212.JIANG Wanlu, NIU Huifeng, LIU Siyuan. Composite fault diagnosis method and its verification experiments[J]. Journal of Vibration and Shock, 2011, 30(6): 176180, 212.[4]Tax D M J, Duin R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(1113): 11911199.[5]Pan Y N, Chen J, Guo L. Robust bearing performance degradation assessment method based on improved wavelet packetsupport vector data description [J]. Mechanical Systems and Signal Processing, 2009, 23(3): 669681.[6]Mac Queen J B. Some methods for classification and analysis of multivariate observations [C]//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA: University of California Press, 1967: 281297.[7]Wu X N, Hu C Y, Wang Y. Model checking algorithm based on ant colony swarm intelligence[J]. Communication in Computer and Information Science, 2009, 51(7): 361368.[8]Singh S, Markou M. An approach to novelty detection applied to the classification of image regions[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(4): 396407.[9]Loparo K A. Bearing data center. [EB/OL]. [20120602]. http: //csegroups.case.edu/bearingdatacenter/pages/downloaddatafile. |