上海交通大学学报(自然版) ›› 2012, Vol. 46 ›› Issue (09): 1431-1435.

• 自动化技术、计算机技术 • 上一篇    下一篇

轨道路径约束的散货卸船机调度优化策略  

 胡大勇, 姚振强   

  1. (上海交通大学 机械系统与振动国家重点实验室, 上海 200240)
  • 收稿日期:2011-10-24 出版日期:2012-09-28 发布日期:2012-09-28
  • 基金资助:

    国家自然科学基金资助项目(51121063),国家科技支撑计划资助项目(2006

Optimization Strategy for Bulk Ship Unloader Scheduling with Rail Routing Constraints

 HU  Da-Yong, YAO  Zhen-Qiang   

  1. (State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240, China)
  • Received:2011-10-24 Online:2012-09-28 Published:2012-09-28

摘要:  基于对卸船机调度特征的描述,建立了以最小化卸载作业完成时间为目标的卸船机调度优化模型,设计了混合遗传算法组件以获得问题近似最优解,通过松弛原问题中的难约束,推导了松弛问题的下界并作为原问题的下界.同时,对具有不同规模的问题进行实例计算与分析.结果表明,所设计的混合遗传算法能够在可接受的计算时间内获得合理的解.    

关键词: 卸船机调度, 数学规划模型, 下界, 混合遗传算法

Abstract: Based on the description of scheduling characteristics of ship unloaders, a scheduling optimization model was formulated to minimize the time for unloading operation. The components of a hybrid genetic algorithm were designed to obtain its near optimal solutions. By relaxing the complex constraints of the original problem, a lower bound for the relaxed problem was introduced to be a lower bound for the original problem. Moreover, computational experiments were conducted on instances of different sizes. The computational results show that the developed hybrid genetic algorithm can obtain reasonable solutions within an acceptable computational time.  

Key words: ship unloader scheduling, mathematical programming model, lower bound, hybrid genetic algorithm

中图分类号: