[1]Qin S J, Yue H Y, Dunia R. Selfvalidating inferential sensors with application to air emission monitoring [J]. Ind Eng Chen Res, 1997, 36(5): 16751685.[2]邱天,丁艳军,吴占松. 基于主元分析的故障可检测性的统计指标比较[J]. 上海交通大学学报,2006, 40(8): 14471450.QIU Tian, DING Yanjun, WU Zhansong. Sensor fault detection statistics based on principal component analysis [J]. Journal of Shanghai Jiaotong University, 2006, 40(8): 14471450.[3]高隽. 人工神经网络原理及仿真实例[M]. 北京: 机械工业出版社, 2003.[4]Vapnik V N. 统计学习理论[M]. 许建华译.北京: 电子工业出版社, 2004: 293323.[5]Choi K, Namburu S M, Azam M, et al. Fault diagnosis in HVAC chillers: Adaptability of a datadriven fault detection and isolation approach [J]. IEEE Instrum Meas Mag, 2005, 8(3): 2432.[6]Cherkassky V, Ma Y Q. Practical selection of SVM parameters and noise estimation for SVM regression [J]. Neural Networks, 2004, 17(1): 113126.[7]Lee J M, Yoo C, Choi S W, et al. Nonlinear process monitoring using kernel principle component analysis [J]. Chemical Engineering Science, 2004, 59(1):223234.[8]Valle S, Li W, Qin S J. Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods[J]. Industrial and Engineering Chemistry Research, 1999, 38(11): 43894401.[9]Cui J T. A robust fault detection and diagnosis strategy for centrifugal chillers [D]. Hong Kong: Department of Building Services Engineering, Hong Kong Polytechnic University, 2005.[10]Fletcher R. Practical methods of optimization [M]. New York: John Wiley and Sons, 1987.[11]Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines [J]. IEEE Transaction on Neural Networks, 2002, 13(2): 415425.[12]Liu Y G, You Z S, Cao L P. A novel and quick SVMbased multiclass classifier [J]. Pattern Recognition, 2006, 39(11): 22582264.[13]Weston J, Watkins C. Support vector machines for multiclass pattern recognition [C]// Proc ESANN’99. Brussels: Facto Press, 1999: 219224.[14]Platt J C, Cristianini N, Shawe T J. Large margin DAGs for multiclass classification [C]//Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000: 547553.[15]Moreira M, Mayoraz E. Improved pairwise coupling classification with correcting classifiers [C]// Euro Conf Machine Learning. London: SpringerVerlag, 1998: 160171.[16]Yuan S F, Chu F L. Support vector machinesbased fault diagnosis for turbopump rotor [J]. Mechanical Systems and Signal Processing, 2006, 20(4): 939952.[17]Lin H T, Lin C J. A practical guide to support vector classification [EB/OL].[20091030].http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf. |