上海交通大学学报(自然版) ›› 2011, Vol. 45 ›› Issue (08): 1226-1229.

• 一般工业技术 • 上一篇    下一篇

基于多层感知器的异常数据实时检测方法

潘轶彪1,袁景淇1,朱凯1,陈宇2,张锐锋2   

  1. (1. 上海交通大学 自动化系,系统控制与信息处理教育部重点实验室, 上海 200240; 2. 贵州电力试验研究院, 贵阳 550002)
  • 收稿日期:2011-01-22 出版日期:2011-08-30 发布日期:2011-08-30
  • 基金资助:

    国家高技术研究发展计划(863)项目(2009AA04Z162);国家自然科学基金资助项目(60974068)

Online Detection of Abnormal Data Based on Multilayer Perceptron

 PAN  Yi-Biao-1, YUAN  Jing-Qi-1, ZHU  Kai-1, CHEN  Yu-2, ZHANG  Rui-Feng-2   

  1. (1. Department of Automation, Key Laboratory of System Control and Information Processing of Ministry of Education of China, Shanghai Jiaotong University, Shanghai 200240, China; 2. Guizhou Electric Power Research Institute, Guiyang 550002, China)
  • Received:2011-01-22 Online:2011-08-30 Published:2011-08-30

摘要: 基于神经网络的多层感知器模型,结合滚动学习预报机制,提出了一种异常数据实时检测方法.该方法在每个当前时刻通过最近的固定长度的历史数据训练神经网络,完成下一时刻的预报.通过神经网络模型残差,确定概率为P的置信区间.当下一时刻数据落入置信区间内,则该数据被判为正常;反之,则为异常.被判为异常的数据不再用作更新历史数据,而以相应的预报值代替.通过某300 MW燃煤火力电站实际过程数据的在线验证,结果证明了所提出方法的有效性.

关键词: 人工神经网络, 多层感知器, 滚动学习预报, 异常数据, 实时监测

Abstract: This work proposed an online detection method of abnormal data based on multilayer perceptron (MLP) and rolling-learning prediction mechanism. In this method, latest historical data with fixed length of data window is used to train an MLP model, and then a one-step-ahead prediction is obtained with the trained MLP model. Secondly, a confidence interval with probability p is calculated with the help of the one-step-ahead prediction and the model residual. New measurement is identified as normal one, if it falls inside the prediction interval; or an abnormal record when it is located out of the prediction interval. Instead of the real measurement, the prediction value is used to update the historical data if abnormal data occurs. Furthermore, through on-line test of real process data collected from a 300 MW coal-fired power generation unit, the effectiveness of the proposed method was verified.

Key words:  artificial neural network (ANN), multilayer perceptron (MLP), rolling-learning prediction, abnormal data, online detection

中图分类号: