杨旭,杨新,熊惠霖
YANG Xu,YANG Xin,XIONG Huilin
摘要: 针对支持向量机(SVM)分类器的模型选择问题,提出了一种基于特征空间的类别可分性度量(FCSM)准则,并将该准则用于优化多个高斯函数的线性组合系数.与核矩阵度量(FSM)准则相比,FCSM准则在核函数优化应用中的适用性更广,并且在优化效果上有更好的理论支持.实验结果表明,与交叉验证法、半径间隔误差(RM)界法以及基于FSM准则的优化方法相比,FCSM准则能从更大函数集范围优选出核函数,使SVM分类器获得更好的分类能力.