上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (10): 1596-1605.doi: 10.16183/j.cnki.jsjtu.2023.151
收稿日期:
2023-04-21
修回日期:
2023-09-22
接受日期:
2023-09-25
出版日期:
2024-10-28
发布日期:
2024-11-01
作者简介:
王 静(1982—),博士,教授,从事网络编码及分布式存储编码等方面的研究; E-mail:jingwang@chd.edu.cn.
基金资助:
WANG Jing(), LI Jinghui, YANG Jiarong, WANG E
Received:
2023-04-21
Revised:
2023-09-22
Accepted:
2023-09-25
Online:
2024-10-28
Published:
2024-11-01
摘要:
局部修复码(LRCs)为用于分布式存储系统中的新型纠删码,能够有效实现海量数据的可靠高效存储,构造具有(r, t)局部性的LRCs已成为当前研究热点.为此,提出基于三角形结合方案的LRCs构造方法,可构造具有任意(r, t)局部性的二元最优LRCs.性能分析结果表明,构造的可用性t=2的LRCs达到了最优码率界,构造的具有任意局部性r>2和可用性t>2的LRCs达到了最优最小距离界.与基于近正则图及基于直积码等构造方法相比,本文构造出的LRCs在码率上表现更优且参数选择更灵活.
中图分类号:
王静, 李静辉, 杨佳蓉, 王娥. 三角形结合方案的最优局部修复码构造[J]. 上海交通大学学报, 2024, 58(10): 1596-1605.
WANG Jing, LI Jinghui, YANG Jiarong, WANG E. Construction of Optimal Locally Repairable Codes of Triangular Association Schemes[J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1596-1605.
[1] | FANG W J, CHEN B, XIA S T, et al. Singleton-optimal LRCs and perfect LRCs via cyclic codes[C]// 2021 IEEE International Symposium on Information Theory. Melbourne, Australia: IEEE, 2021: 3261-3266. |
[2] | YAVARI E, ESMAEILI M. Locally repairable codes: Joint sequential-parallel repair for multiple node failures[J]. IEEE Transactions on Information Theory, 2020, 66(1): 222-232. |
[3] | PAPAILIOPOULOS D S, DIMAKIS A G. Locally repairable codes[J]. IEEE Transactions on Information Theory, 2014, 60(10): 5843-5855. |
[4] | WANG A Y, ZHANG Z F, LIN D D. Bounds for binary linear locally repairable codes via a sphere-packing approach[J]. IEEE Transactions on Information Theory, 2019, 65(7): 4167-4179. |
[5] | GOPALAN P, HUANG C, SIMITCI H, et al. On the locality of codeword symbols[J]. IEEE Transactions on Information Theory, 2012, 58(11): 6925-6934. |
[6] | LUO Y, XING C P, YUAN C. Optimal locally repairable codes of distance 3 and 4 via cyclic codes[J]. IEEE Transactions on Information Theory, 2019, 65(2): 1048-1053. |
[7] | JIN L F. Explicit construction of optimal locally recoverable codes of distance 5 and 6 via binary constant weight codes[J]. IEEE Transactions on Information Theory, 2019, 65(8): 4658-4663. |
[8] | HAO J, XIA S T, SHUM K W, et al. Bounds and constructions of locally repairable codes: Parity-check matrix approach[J]. IEEE Transactions on Information Theory, 2020, 66(12): 7465-7474. |
[9] | FU Q, GUO L B, LI R H, et al. On the locality of some optimal ternary codes with dimension 6[C]// 2020 13th International Symposium on Computational Intelligence and Design. Hangzhou, China: IEEE, 2020: 155-158. |
[10] | CAI H, CHENG M Q, FAN C L, et al. Optimal locally repairable systematic codes based on packings[J]. IEEE Transactions on Communications, 2019, 67(1): 39-49. |
[11] | RAWAT A S, PAPAILIOPOULOS D S, DIMAKIS A G, et al. Locality and availability in distributed storage[J]. IEEE Transactions on Information Theory, 2016, 62(8): 4481-4493. |
[12] | TAMO I, BARG A. Bounds on locally recoverable codes with multiple recovering sets[C]// 2014 IEEE International Symposium on Information Theory. Honolulu, USA: IEEE, 2014: 691-695. |
[13] | WANG A Y, ZHANG Z F, LIN D D. Two classes of (r, t)-locally repairable codes[C]// 2016 IEEE International Symposium on Information Theory. Barcelona, Spain:IEEE, 2016: 445-449. |
[14] | HAO J, XIA S T, CHEN B. On the single-parity locally repairable codes with availability[C]// 2016 IEEE/CIC International Conference on Communications in China. Chengdu, China: IEEE, 2016: 1-4. |
[15] | BALAJI S B, KUMAR P V. Bounds on the rate and minimum distance of codes with availability[C]// 2017 IEEE International Symposium on Information Theory. Aachen, Germany: IEEE, 2017: 3155-3159. |
[16] | KIM J H, SONG H Y. Hypergraph-based binary locally repairable codes with availability[J]. IEEE Communications Letters, 2017, 21(11): 2332-2335. |
[17] | TAN P, ZHOU Z C, SIDORENKO V, et al. Two classes of optimal LRCs with information (r, t)-locality[J]. Designs, Codes and Cryptography, 2020, 88(9): 1741-1757. |
[18] | PRAKASH N, LALITHA V, BALAJI S B, et al. Codes with locality for two erasures[J]. IEEE Transactions on Information Theory, 2019, 65(12): 7771-7789. |
[19] | BALAJI S B, PRASANTH K P, KUMAR P V. Binary codes with locality for multiple erasures having short block length[C]// 2016 IEEE International Symposium on Information Theory. Barcelona, Spain:IEEE, 2016: 655-659. |
[20] | BAILEY R. Association schemes: Designed experiments, algebra, and combinatorics[M]. Cambridge: Cambridge University Press, 2004. |
[21] | WANG J, SHEN K Q, LIU X Y, et al. Construction of binary locally repairable codes with optimal distance and code rate[J]. IEEE Communications Letters, 2021, 25(7): 2109-2113. |
[22] | WANG A Y, ZHANG Z F, LIU M L. Achieving arbitrary locality and availability in binary codes[C]// 2015 IEEE International Symposium on Information Theory. Hong Kong, China: IEEE, 2015: 1866-1870. |
[1] | 许亮业, 石连星, 单蓉胜. 一种纠删码条带化数据的一致性检查方法[J]. 上海交通大学学报, 2024, 58(4): 579-584. |
[2] | 黄鹤, 熊武, 吴琨, 王会峰, 茹锋, 王珺. 基于记忆传递旗鱼优化的K均值混合迭代聚类[J]. 上海交通大学学报, 2022, 56(12): 1638-1648. |
[3] | 邓凯, 郭洪. 求解导管架相贯线最小距离的编程方法[J]. 海洋工程装备与技术, 2018, 5(增刊): 313-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||