上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (1): 111-126.doi: 10.16183/j.cnki.jsjtu.2022.284
• 新型电力系统与综合能源 • 上一篇
杨博1, 胡袁炜骥1, 郭正勋1, 束洪春1, 曹璞璘1(), 李子林2
收稿日期:
2022-07-21
修回日期:
2022-11-17
接受日期:
2023-01-28
出版日期:
2024-01-28
发布日期:
2024-01-16
通讯作者:
曹璞璘,副教授;E-mail:作者简介:
杨 博(1988-),教授,博士生导师,从事基于人工智能的新能源系统优化与控制研究.
基金资助:
YANG Bo1, HU Yuanweiji1, GUO Zhengxun1, SHU Hongchun1, CAO Pulin1(), LI Zilin2
Received:
2022-07-21
Revised:
2022-11-17
Accepted:
2023-01-28
Online:
2024-01-28
Published:
2024-01-16
摘要:
在新能源发电技术快速发展的背景下,温差发电(TEG)技术能够很好地利用新能源发电中产生的废热.然而,温度分布的变化会使得TEG阵列的输出特性恶化、发电效率降低.提出基于人工蜂群(ABC)算法的TEG阵列重构方法,在3种不同温度分布情况下,利用ABC在对称9×9和不对称10×15两种TEG阵列进行动态重构.将所提算法与遗传算法、粒子群优化算法和秃鹰搜索优化算法3种启发式算法作对比,并给出由ABC重构后的TEG阵列温度分布图.结果表明:ABC能够提高TEG阵列的输出功率,输出功率-电压曲线均趋向呈现出单个峰值.此外,利用基于RTLAB平台上的硬件在环实验验证了硬件可行性.
中图分类号:
杨博, 胡袁炜骥, 郭正勋, 束洪春, 曹璞璘, 李子林. 基于人工蜂群算法的温差发电阵列最优重构方法[J]. 上海交通大学学报, 2024, 58(1): 111-126.
YANG Bo, HU Yuanweiji, GUO Zhengxun, SHU Hongchun, CAO Pulin, LI Zilin. Optimal Reconfiguration Method for Thermoelectric Power Array Based on Artificial Bee Colony Algorithm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 111-126.
表1
对称9×9 TEG阵列各算法的输出功率的统计结果
算法 | 算例结果 | 不均匀温度分布类型 | ||
---|---|---|---|---|
对角线 | 外部 | 内部 | ||
未优化状态 | Pmax/W | 532.4 | 670.9 | 519.8 |
ABC | Pmax/W | 585.8 | 694.4 | 533.2 |
Pave/W | 579.0 | 693.7 | 533.1 | |
GA | Pmax/W | 585.8 | 694.4 | 533.2 |
Pave/W | 565.5 | 694.4 | 532.8 | |
PSO | Pmax/W | 585.8 | 686.9 | 533.2 |
Pave/W | 570.4 | 675.1 | 532.8 | |
BES | Pmax/W | 565.0 | 647.0 | 532.6 |
Pave/W | 558.7 | 623.3 | 532.4 |
表3
不对称10×15 TEG阵列各算法的输出功率的统计结果
算法 | 算例结果 | 不均匀温度分布类型 | ||
---|---|---|---|---|
对角线 | 外部 | 内部 | ||
未优化状态 | Pmax/W | 1048.5 | 1143.8 | 1017.5 |
ABC | Pmax/W | 1191.2 | 1193.3 | 1036.9 |
Pave/W | 1161.4 | 1192.4 | 1036.8 | |
GA | Pmax/W | 1162.3 | 1193.4 | 1036.9 |
Pave/W | 1130.1 | 1192.0 | 1036.7 | |
PSO | Pmax/W | 1156.6 | 1193.0 | 1036.8 |
Pave/W | 1133.0 | 1180.3 | 1036.5 | |
BES | Pmax/W | 1103.5 | 1155.5 | 1036.1 |
Pave/W | 1091.2 | 1150.9 | 1035.8 |
[1] | 蒋新强. 汽车尾气半导体温差发电系统研究[D]. 广州: 华南理工大学, 2010. |
JIANG Xinqiang. Research on semiconductor thermoelectric generating system of vehicle exhaust gases[D]. Guangzhou: South China University of Technology, 2010. | |
[2] | 林比宏, 陈晓航, 陈金灿. 太阳能驱动半导体温差发电器性能参数的优化设计[J]. 太阳能学报, 2006, 27(10): 1021-1026. |
LIN Bihong, CHEN Xiaohang, CHEN Jincan. Optimum design of the performance parameters of a solar-driven semiconductor thermoelectric generator[J]. Acta Energiae Solaris Sinica, 2006, 27(10): 1021-1026. | |
[3] | WANG Z Y, LEONOV V, FIORINI P, et al. Realization of a wearable miniaturized thermoelectric generator for human body applications[J]. Sensors & Actuators A: Physical, 2009, 156(1): 95-102. |
[4] | YU C, CHAU K T. Thermoelectric automotive waste heat energy recovery using maximum power point tracking[J]. Energy Conversion & Management, 2009, 50(6): 1506-1512. |
[5] | CHATZIDAKIS P G, CHRISTIDIS G C, TATAKIS E C. Comparative study of MPPT algorithms for thermoelectric generators[C]// 2013 15th European Conference on Power Electronics & Applications. Lille, France: IEEE, 2013: 1-8. |
[6] | 刘永刚, 张辉. 半导体温差发电特性分析及MPPT控制算法研究[C]// 中国电工技术学会电力电子学会第十四届学术年会论文集. 福州, 2014: 280-283. |
LIU Yonggang, ZHANG Hui. Semiconductor thermoelectric generation characteristics analysis and MPPT control algorithm research[C]// The 14th Annual Conference of Power Electronics Society of China Electrotechnical Society. Fuzhou, China: 2014: 280-283. | |
[7] |
MONTECUCCO A, KNOX A R. Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators[J]. IEEE Transactions on Power Electronics, 2014, 30(2): 828-839.
doi: 10.1109/TPEL.63 URL |
[8] | 王军, 阎铁生, 陈亮, 等. 基于短路电流法的温差发电最大功率点跟踪控制[J]. 电工技术学报, 2020, 35(2): 318-329. |
WANG Jun, YAN Tiesheng, CHEN Liang, et al. Maximum power point tracking scheme for thermoelectric generators based on short-circuit current method[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 318-329. | |
[9] | 王立舒, 白龙, 房俊龙, 等. 基于双曲正切函数的光伏/温差自适应MPPT控制策略研究[J]. 农业工程学报, 2021, 37(16): 184-191. |
WANG Lishu, BAI Long, FANG Junlong, et al. Self-adaptive photovoltaic/temperature difference MPPT control strategy based on hyperbolic tangent function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 184-191. | |
[10] | 徐建国, 王海新, 沈建新. 基于电导增量法与改进粒子群算法混合控制的最大功率点跟踪策略[J]. 可再生能源, 2019, 37(6): 824-831. |
XU Jianguo, WANG Haixin, SHEN Jianxin. The hybrid control maximum power point tracking(MPPT) strategy based on incremental conductance method and improved particle swarm optimization algorithm[J]. Renewable Energy Resources, 2019, 37(6): 824-831. | |
[11] | 邵瑞凝, 杨博, 束洪春, 等. 基于改进蜉蝣算法的光伏阵列最优重构方法[J]. 电力系统自动化, 2022, 46(11): 142-150. |
SHAO Ruining, YANG Bo, SHU Hongchun, et al. Optimal reconfiguration method for photovoltaic arrays based on improved mayfly algorithm[J]. Automation of Electric Power Systems, 2022, 46(11): 142-150. | |
[12] |
YOUSRI D, BABU T S, BESHR E, et al. A robust strategy based on marine predators algorithm for large scale photovoltaic array reconfiguration to mitigate the partial shading effect on the performance of PV system[J]. IEEE Access, 2020, 8: 112407-112426.
doi: 10.1109/Access.6287639 URL |
[13] |
ALAHMAD M, CHAABAN M A, LAU S K, et al. An adaptive utility interactive photovoltaic system based on a flexible switch matrix to optimize performance in real-time[J]. Solar Energy, 2012, 86(3): 951-963.
doi: 10.1016/j.solener.2011.12.028 URL |
[14] |
王龙, 陈卓, 黄文力, 等. 基于秃鹰搜索算法的部分遮蔽条件下光伏阵列重构方法[J]. 电力建设, 2022, 43(3): 22-30.
doi: 10.12204/j.issn.1000-7229.2022.03.003 |
WANG Long, CHEN Zhuo, HUANG Wenli, et al. Bald eagle search based PV array reconfiguration technique under partial shading condition[J]. Electric Power Construction, 2022, 43(3): 22-30.
doi: 10.12204/j.issn.1000-7229.2022.03.003 |
|
[15] | 姜建国, 郭晓丽, 陈鹏, 等. 优化的GA算法在大型配电网络重构中的应用[J]. 吉林大学学报(信息科学版), 2022, 40(3): 400-407. |
JIANG Jianguo, GUO Xiaoli, CHEN Peng, et al. Application of optimized GA algorithm in large distribution network reconfiguration[J]. Journal of Jilin University (Information Science Edition), 2022, 40(3): 400-407. | |
[16] | 包丽梅. 人工蜂群算法研究综述[J]. 电脑知识与技术, 2016, 12(22): 159-160. |
BAO Limei. Artificial colony algorithm research were reviewed[J]. Computer Knowledge & Technology, 2016, 12(22): 159-160. | |
[17] |
COMPADRE TORRECILLA M, MONTECUCCO A, SIVITER J, et al. Novel model and maximum power tracking algorithm for thermoelectric generators operated under constant heat flux[J]. Applied Energy, 2019, 256: 113930.
doi: 10.1016/j.apenergy.2019.113930 URL |
[18] | LI L, GAO X, ZHANG G, et al. Combined solar concentration and carbon nanotube absorber for high performance solar thermoelectric generators[J]. Energy Conversion & Management, 2019, 183: 109-115. |
[19] |
LAIRD I, LU D D C. High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator[J]. IEEE Transactions on Power Electronics, 2013, 28(7): 3147-3157.
doi: 10.1109/TPEL.2012.2219393 URL |
[20] |
LIU Y H, CHIU Y H, HUANG J W, et al. A novel maximum power point tracker for thermoelectric generation system[J]. Renewable Energy, 2016, 97: 306-318.
doi: 10.1016/j.renene.2016.05.001 URL |
[21] |
AOUCHICHE N, AITCHEIKH M S, BECHERIF M, et al. AI-based global MPPT for partial shaded grid connected PV plant via MFO approach[J]. Solar Energy, 2018, 171: 593-603.
doi: 10.1016/j.solener.2018.06.109 URL |
[22] | WU S J, WANG S, YANG C J, et al. Energy management for thermoelectric generators based on maximum power point and load power tracking[J]. Energy Conversion & Management, 2018, 177: 55-63. |
[23] | YANG B, YE H Y, WANG J B, et al. PV arrays reconfiguration for partial shading mitigation: Recent advances, challenges and perspectives[J]. Energy Conversion & Management, 2021, 247: 114738 |
[24] |
RAJAN N A, SHRIKANT K D, DHANALAKSHMI B, et al. Solar PV array reconfiguration using the concept of standard deviation and genetic algorithm[J]. Energy Procedia, 2017, 117: 1062-1069.
doi: 10.1016/j.egypro.2017.05.229 URL |
[25] |
BABU T S, RAM J P, DRAGIČEVIĆ T, et al. Particle swarm optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 74-85.
doi: 10.1109/TSTE.2017.2714905 URL |
[26] |
ALSATTAR H A, ZAIDAN A A, ZAIDAN B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review, 2020, 53(3): 2237-2264.
doi: 10.1007/s10462-019-09732-5 |
[1] | 段懿玲, 刘作霖, 林尚超. 固态温差发电机能拥有卡诺热机效率吗?[J]. 上海交通大学学报, 2021, 55(Sup.1): 112-115. |
[2] | 胡济珠, 周俊, 李云云. 基于有机/无机复合材料的航天环境下高效热电转换技术研究 [J]. 空天防御, 2020, 3(2): 72-75. |
[3] | 王晓晗,王韬,李雄伟,张阳,黄长阳. 基于人工蜂群的硬件木马测试向量生成方法[J]. 上海交通大学学报, 2019, 53(10): 1218-1224. |
[4] | 杜振鑫1,2,韩德志2,刘广钟2,贾建鑫2. 一种逐步加强开采的人工蜂群算法[J]. 上海交通大学学报(自然版), 2018, 52(1): 96-102. |
[5] | 王文全,黄胜,王超,胡玉龙,侯远杭. 舰船通道布置方案的直觉模糊多属性群决策方法[J]. 上海交通大学学报(自然版), 2013, 47(06): 894-899. |
[6] | 杨晶晶1, 刘永生1, 房文健1, 方津1, 彭麟1, 杨正龙2, 高湉1, 谷民安1. 具有负反馈特征的光伏-温差联合发电模型与效率分析[J]. 上海交通大学学报(自然版), 2013, 47(04): 550-554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||