上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (1): 11-18.doi: 10.16183/j.cnki.jsjtu.2022.130
吴清1, 贾乾罡2, 严正2(), 钟准1, 郭颂1, 李志勇1
收稿日期:
2022-04-27
修回日期:
2022-09-06
接受日期:
2022-09-22
出版日期:
2024-01-28
发布日期:
2024-01-16
通讯作者:
严 正,教授,博士生导师;E-mail:作者简介:
吴 清(1971-),教授级高级工程师,从事电力系统自动化研究.
基金资助:
WU Qing1, JIA Qiangang2, YAN Zheng2(), ZHONG Zhun1, GUO Song1, LI Zhiyong1
Received:
2022-04-27
Revised:
2022-09-06
Accepted:
2022-09-22
Online:
2024-01-28
Published:
2024-01-16
摘要:
发展分布式可再生能源是推动能源转型的关键手段,组织市场化交易能够促进分布式可再生能源生产和消纳.然而,可再生能源出力的不确定性使其容易在市场交割时出现偏差,进而为配电系统安全运行带来压力,但现有市场化交易机制仍难以激励市场主体主动减少偏差.为此,通过量化信用成本来引导分布式绿电的诚信交割行为.同时,考虑分布式绿电主体的策略性报价行为,建立考虑主体信用的分布式绿电市场化交易模型.然后,提出基于最优响应法的迭代算法来计算绿电市场的纳什均衡点.算例结果表明:所提市场机制能够以激励相容的方式引导用户的诚信行为,在降低交割偏差的同时提高绿电市场社会福利.
中图分类号:
吴清, 贾乾罡, 严正, 钟准, 郭颂, 李志勇. 考虑主体信用的配电网分布式绿电交易方法[J]. 上海交通大学学报, 2024, 58(1): 11-18.
WU Qing, JIA Qiangang, YAN Zheng, ZHONG Zhun, GUO Song, LI Zhiyong. Green Energy Trading in Distribution Network Considering Credit Value[J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 11-18.
表1
算例参数
参数 | 数值 |
---|---|
29.75/11.87/27.46/12.78/13.99 | |
(美元·MW-1) | 0/60 |
42.96/49.74/60.24/68.85/64.15/61.55 67.74/53.25/65.90/64.12/80.83/75.79 | |
0.32/0.79/0.55/0.26/0.10/0.30 0.45/0.71/0.33/0.13/0.49/0.47 | |
0/30 | |
0/50 | |
Pxy,max/MW | 20 |
Ki | 30 |
λ/(美元·MW-1) | 30 |
φ | 1 |
μ | 0.1 |
Δt/min | 5 |
[1] | 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-13) [2023-01-10]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. |
Xinhua News Agency. Outline of the 14th Five-Year Plan (2021—2025) for national economic and social development and Vision 2035 of the People’s Republic of China[EB/OL]. (2021-03-13) [2023-01-10]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. | |
[2] | 王栋, 李达, 冯景丽, 等. 考虑绿色属性的多微网间电能可信自治交易方法[J]. 电力系统自动化, 2022, 46(23): 1-10. |
WANG Dong, LI Da, FENG Jingli, et al. Trustworthy and autonomous electricity trading method among multiple microgrids considering green property[J]. Automation of Electric Power Systems, 2022, 46(23): 1-10. | |
[3] | 张巍, 卢骧. 点对点交易下储能聚合商共享自营多模式交易模型[J]. 电力系统自动化, 2022, 46(2): 15-23. |
ZHANG Wei, LU Xiang. Sharing and self-operating multi-mode trading model of energy storage aggregators with peer-to-peer trade[J]. Automation of Electric Power Systems, 2022, 46(2): 15-23. | |
[4] | 吴锦领, 楼平, 管敏渊, 等. 基于非对称纳什谈判的多微网电能共享运行优化策略[J]. 电网技术, 2022, 46(7): 2711-2723. |
WU Jinling, LOU Ping, GUAN Minyuan, et al. Operation optimization strategy of multi-microgrids energy sharing based on asymmetric Nash bargaining[J]. Power System Technology, 2022, 46(7): 2711-2723. | |
[5] | 胡钰, 李华强, 李山山, 等. 基于区块链的产消用户端对端电能交易方法[J]. 电力自动化设备, 2022, 42(1): 101-108. |
HU Yu, LI Huaqiang, LI Shanshan, et al. Peer-to-peer power trading method for proconsumers based on blockchain[J]. Electric Power Automation Equipment, 2022, 42(1): 101-108. | |
[6] | 马腾, 刘洋, 许立雄, 等. 基于区块链的配电侧多微电网电能去中心化交易模型[J]. 电网技术, 2021, 45(6): 2237-2247. |
MA Teng, LIU Yang, XU Lixiong, et al. Energy decentralized transaction model of multi-microgrid in distribution side based on blockchain[J]. Power System Technology, 2021, 45(6): 2237-2247. | |
[7] | 赵银波, 高红均, 王仲, 等. 考虑用户电能替代的商业园区运营商多能交易博弈优化决策[J]. 电网技术, 2021, 45(4): 1320-1331. |
ZHAO Yinbo, GAO Hongjun, WANG Zhong, et al. Optimal decision of multi-energy trading game for commercial park operators considering user-side electricity substitution[J]. Power System Technology, 2021, 45(4): 1320-1331. | |
[8] | 赵天辉, 王建学, 陈洋. 面向综合能源交易的新型城镇分层市场架构和出清算法[J]. 电力系统自动化, 2021, 45(4): 73-80. |
ZHAO Tianhui, WANG Jianxue, CHEN Yang. Hierarchical market structure and clearing algorithm for integrated energy trading of new-type towns[J]. Automation of Electric Power Systems, 2021, 45(4): 73-80. | |
[9] | 王丹, 刘博, 贾宏杰, 等. 基于强化学习的产消用户端对端电能交易决策[J]. 电力系统自动化, 2021, 45(3): 139-147. |
WANG Dan, LIU Bo, JIA Hongjie, et al. Peer-to-peer energy transaction decision of prosumers based on reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45(3): 139-147. | |
[10] | 单俊嘉, 胡俊杰, 吴界辰. 面向虚拟电厂能量管理的点对点市场交易机制与模型[J]. 电网技术, 2020, 44(9): 3401-3408. |
SHAN Junjia, HU Junjie, WU Jiechen. Peer-to-peer market trading mechanism and model for virtual power plant energy management[J]. Power System Technology, 2020, 44(9): 3401-3408. | |
[11] | 李幸芝, 韩蓓, 李国杰, 等. 分布式绿色能源碳交易机制及碳数据管理的挑战[J]. 上海交通大学学报, 2022, 56(8): 977-993. |
LI Xingzhi, HAN Bei, LI Guojie, et al. Challenges of distributed green energy carbon trading mechanism and carbon data management[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 977-993. | |
[12] | 李林晏, 韩爽, 乔延辉, 等. 面向高比例新能源并网场景的风光-电动车协同调度方法[J]. 上海交通大学学报, 2022, 56(5): 554-563. |
LI Linyan, HAN Shuang, QIAO Yanhui, et al. A wind-solar-electric vehicles coordination scheduling method for high proportion new energy grid-connected scenarios[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 554-563. | |
[13] | 范帅, 危怡涵, 何光宇, 等. 面向新型电力系统的需求响应机制探讨[J]. 电力系统自动化, 2022, 46(7): 1-12. |
FAN Shuai, WEI Yihan, HE Guangyu, et al. Discussion on demand response mechanism for new power systems[J]. Automation of Electric Power Systems, 2022, 46(7): 1-12. | |
[14] | 路尧, 胡健, 张晓杰, 等. 基于DPoA共识机制的分布式电力交易信用激励[J]. 电力自动化设备, 2022, 42(1): 116-123. |
LU Yao, HU Jian, ZHANG Xiaojie, et al. Credit incentives of distributed power transaction based on DPoA consensus mechanism[J]. Electric Power Automation Equipment, 2022, 42(1): 116-123. | |
[15] |
MORSTYN T, MCCULLOCH M D. Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences[J]. IEEE Transactions on Power Systems, 2019, 34(5): 4005-4014.
doi: 10.1109/TPWRS.59 URL |
[16] |
WANG T H, GUO J, AI S P, et al. RBT: A distributed reputation system for blockchain-based peer-to-peer energy trading with fairness consideration[J]. Applied Energy, 2021, 295: 117056.
doi: 10.1016/j.apenergy.2021.117056 URL |
[17] | 刘俊, 王超, 陈津莼, 等. 基于博弈论的城镇能源互联网多市场主体收益模型[J]. 电力系统自动化, 2019, 43(14): 90-96. |
LIU Jun, WANG Chao, CHEN Jinchun, et al. Game theory based profit model for multiple market entities of urban energy Internet[J]. Automation of Electric Power Systems, 2019, 43(14): 90-96. | |
[18] |
CHEN S J, ZHANG L, YAN Z, et al. A distributed and robust security-constrained economic dispatch algorithm based on blockchain[J]. IEEE Transactions on Power Systems, 2022, 37(1): 691-700.
doi: 10.1109/TPWRS.2021.3086101 URL |
[19] |
CHEN S J, MI H N, PING J, et al. A blockchain consensus mechanism that uses Proof of Solution to optimize energy dispatch and trading[J]. Nature Energy, 2022, 7(6): 495-502.
doi: 10.1038/s41560-022-01027-4 |
[20] |
PING J, YAN Z, CHEN S J. A privacy-preserving blockchain-based method to optimize energy trading[J]. IEEE Transactions on Smart Grid, 2023, 14(2): 1148-1157.
doi: 10.1109/TSG.2022.3198165 URL |
[21] |
MAZZI N, KAZEMPOUR J, PINSON P. Price-taker offering strategy in electricity pay-as-bid markets[J]. IEEE Transactions on Power Systems, 2018, 33(2): 2175-2183.
doi: 10.1109/TPWRS.2017.2737322 URL |
[22] | BLUMSACK S. Basic economics of power generation, transmission and distribution[DB/OL]. (2022-01-01) [2023-06-26]. https://www.e-education.psu.edu/eme801/node/530. |
[23] |
CUNNINGHAM L B, BALDICK R, BAUGHMAN M L. An empirical study of applied game theory: Transmission constrained Cournot behavior[J]. IEEE Transactions on Power Systems, 2002, 17(1): 166-172.
doi: 10.1109/59.982209 URL |
[24] | 袁智强, 侯志俭, 宋依群, 等. 考虑输电约束古诺模型的均衡分析[J]. 中国电机工程学报, 2004, 24(6): 73-79. |
YUAN Zhiqiang, HOU Zhijian, SONG Yiqun, et al. Analysis of equilibrium of cournot model with considering transmission constraints[J]. Proceedings of the CSEE, 2004, 24(6): 73-79. | |
[25] |
SONG Y, ZHENG Y, LIU T, et al. A new formulation of distribution network reconfiguration for reducing the voltage volatility induced by distributed generation[J]. IEEE Transactions on Power Systems, 2020, 35(1): 496-507.
doi: 10.1109/TPWRS.59 URL |
[26] |
LI T, SHAHIDEHPOUR M. Strategic bidding of transmission-constrained GENCOs with incomplete information[J]. IEEE Transactions on Power Systems, 2005, 20(1): 437-447.
doi: 10.1109/TPWRS.2004.840378 URL |
[27] |
JIA Q G, LI Y Y, YAN Z, et al. Reactive power market design for distribution networks with high photovoltaic penetration[J]. IEEE Transactions on Smart Grid, 2023, 14(2): 1642-1651.
doi: 10.1109/TSG.2022.3186338 URL |
[28] |
CHEN S J, XU C K, YAN Z, et al. Accommodating strategic players in distributed algorithms for power dispatch problems[J]. IEEE Transactions on Cybernetics, 2022, 52(11): 12594-12603.
doi: 10.1109/TCYB.2021.3085400 URL |
[1] | 吴磊, 韩冬, 毛贵江, 刘微, 周扬飞. 适应分布式发电市场化交易的过网费计算方法[J]. 上海交通大学学报, 2023, 57(7): 887-898. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||