上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (4): 495-504.doi: 10.16183/j.cnki.jsjtu.2022.018
所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• 新型电力系统与综合能源 • 上一篇
收稿日期:
2022-01-24
修回日期:
2022-03-28
接受日期:
2022-05-05
出版日期:
2023-04-28
发布日期:
2023-05-05
通讯作者:
姚 晔,副教授,博士生导师;E-mail:作者简介:
熊 磊(1998-),硕士生,从事公共建筑空调系统建模及其优化控制研究.
基金资助:
XIONG Lei, MIAO Yurun, FAN Xinzhou, YAO Ye()
Received:
2022-01-24
Revised:
2022-03-28
Accepted:
2022-05-05
Online:
2023-04-28
Published:
2023-05-05
摘要:
中央空调系统在面临末端数量多、末端负荷需求变化频繁的情况下,虽然采用常规的比例积分微分控制或固定参数控制能够满足冷量需求,但存在冷量过剩带来的能耗问题.针对中央空调系统中的空气调节子系统,提出一种基于改进麻雀搜索算法(ISSA)的中央空调系统节能控制方法,利用t分布强化麻雀群体的搜索能力,基于轮盘赌规则使得个体向最优群体学习,增强算法跳出局部最优的能力,有效改进控制参数的寻优精度和稳定性.在12个测试函数中,寻优精度和稳定性大多提升2个数量级以上.针对空气调节子系统能耗优化问题,ISSA表现出很好的节能潜力,相比于固定参数的控制方法节约能耗25.13%.ISSA解决实际工程问题的可行性也得到验证.
中图分类号:
熊磊, 苗雨润, 范新舟, 姚晔. 一种利用改进麻雀搜索算法的中央空调系统节能控制方法[J]. 上海交通大学学报, 2023, 57(4): 495-504.
XIONG Lei, MIAO Yurun, FAN Xinzhou, YAO Ye. Energy-Saving Control of Central Air-Conditioning System Based on an Improved-SSA[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 495-504.
表2
ISSA测试函数优化结果对比
测试函数 | ISSA1 | ISSA2 | ISSA | |||||
---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |||
F1 | 4.81×10-14 | 1.52×10-13 | 1.09×10-16 | 2.93×10-16 | 1.72×10-16 | 8.11×10-16 | ||
F2 | 5.78×10-6 | 1.34×10-5 | 5.97×10-8 | 1.60×10-7 | 2.86×10-7 | 9.22×10-7 | ||
F3 | 1.25×10-11 | 4.12×10-11 | 3.19×10-12 | 8.58×10-12 | 9.38×10-16 | 5.1×10-15 | ||
F4 | 6.55×10-8 | 1.64×10-7 | 1.96×10-8 | 6.41×10-8 | 5.76×10-9 | 1.85×10-8 | ||
F5 | 1.06×10-7 | 1.79×10-7 | 1.04×10-9 | 1.10×10-9 | 6.47×10-10 | 5.67×10-10 | ||
F6 | 4.20×10-6 | 6.38×10-6 | 4.83×10-7 | 4.32×10-7 | 7.47×10-7 | 8.02×10-7 | ||
F7 | 4.24×10-17 | 2.09×10-16 | 6.63×10-19 | 2.68×10-18 | 6.85×10-18 | 3.19×10-17 | ||
F8 | 3.52×10-10 | 1.31×10-9 | 8.19×10-13 | 2.41×10-12 | 5.55×10-13 | 1.68×10-12 | ||
F9 | 3.01×10-14 | 1.05×10-13 | 4.91×10-14 | 1.25×10-13 | 2.75×10-11 | 9.29×10-11 | ||
F10 | 3.74×10-16 | 1.09×10-15 | 1.47×10-14 | 5.49×10-14 | 3.70×10-18 | 1.34×10-18 | ||
F11 | 1.68×10-6 | 3.16×10-6 | 4.72×10-10 | 1.91×10-9 | 4.53×10-19 | 2.38×10-9 | ||
F12 | 2.06×10-8 | 3.77×10-8 | 7.35×10-11 | 8.93×10-11 | 2.71×10-11 | 9.78×10-11 |
表3
ISSA与其他种群算法的测试函数优化结果对比
测试 函数 | DE | GA | SBO | SSA | ISSA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |||||
F1 | 3.88×10-5 | 1.08×10-5 | 7.09×10 | 1.34×102 | 1.44×10-3 | 3.46×10-4 | 1.86×10-12 | 8.75×10-12 | 1.72×10-16 | 8.11×10-16 | ||||
F2 | 7.58×10-4 | 1.49×10-4 | 1.79×10 | 9.34×10-1 | 5.78×10-2 | 2.16×10-2 | 4.76×10-5 | 1.77×10-4 | 2.86×10-7 | 9.22×10-7 | ||||
F3 | 2.55×10-3 | 5.98×10-4 | 8.05×103 | 9.54×103 | 1.97×10 | 5.77×10 | 5.94×10-9 | 3.04×10-8 | 9.38×10-16 | 5.10×10-15 | ||||
F4 | 2.57 | 1.13 | 4.68×10 | 4.64 | 5.68 | 1.32 | 7.50×10-7 | 2.07×10-6 | 5.76×10-9 | 1.85×10-8 | ||||
F5 | 3.92×10-5 | 1.21×10-5 | 3.07×10 | 5.09×10 | 1.69×10-3 | 6.45×10-4 | 2.31×10-6 | 5.52×10-6 | 6.47×10-10 | 5.67×10-10 | ||||
F6 | 7.71×10 | 4.46×10 | 2.22×103 | 3.94×103 | 1.66×102 | 1.57×102 | 1.51×10-5 | 2.69×10-5 | 7.47×10-7 | 8.02×10-7 | ||||
F7 | 4.57×10-23 | 2.07×10-22 | 9.41×10-7 | 4.91×10-6 | 4.52×10-11 | 3.29×10-11 | 4.95×10-16 | 2.13×10-15 | 6.85×10-18 | 3.19×10-17 | ||||
F8 | 1.72×102 | 2.32×102 | 1.77×102 | 2.32×10 | 3.14 | 2.66 | 9.80×10-10 | 3.84×10-9 | 5.55×10-13 | 1.68×10-12 | ||||
F9 | 6.73×10 | 1.14×10 | 6.59×10 | 5.93 | 2.59×10 | 8.05 | 8.22×10-12 | 3.02×10-11 | 2.75×10-11 | 9.29×10-11 | ||||
F10 | 3.89×10-4 | 2.63×10-4 | 1.53 | 8.73×10-1 | 4.57×10-2 | 1.81×10-2 | 9.88×10-14 | 4.47×10-12 | 3.70×10-18 | 1.34×10-18 | ||||
F11 | 1.58×10-3 | 2.16×10-3 | 2.26 | 1.07 | 1.70 | 1.59 | 1.97×10-6 | 8.11×10-6 | 4.53×10-19 | 2.38×10-9 | ||||
F12 | 3.20×10-6 | 5.53×10-6 | 2.45 | 2.42 | 3.46 | 4.26 | 2.00×10-6 | 2.41×10-6 | 2.71×10-11 | 9.78×10-11 |
[1] |
YAO R M, LI B Z, STEEMERS K. Energy policy and standard for built environment in China[J]. Renewable Energy, 2005, 30(13): 1973-1988.
doi: 10.1016/j.renene.2005.01.013 URL |
[2] |
CHWIEDUK D. Towards sustainable-energy buildings[J]. Applied Energy, 2003, 76(1/2/3): 211-217.
doi: 10.1016/S0306-2619(03)00059-X URL |
[3] |
TANG R, WANG S W, SHAN K, et al. Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting[J]. Energy, 2018, 151: 771-781.
doi: 10.1016/j.energy.2018.03.032 URL |
[4] | ZHAO T Y, WANG J M, FU P, et al. Study on simplified energy-efficient control methods of HVAC cooling water system from the global online optimization perspective[J]. Energy Science & Engineering, 2021, 9(4): 464-482. |
[5] | SYED ASAD H, WAN H, KASUN H, et al. Distributed real-time optimal control of central air-conditioning systems[J]. Energy & Buildings, 2022, 256: 111756. |
[6] |
CHAN T S, CHANG Y C, HUANG J H. Application of artificial neural network and genetic algorithm to the optimization of load distribution for a multiple-type-chiller plant[J]. Building Simulation, 2017, 10(5): 711-722.
doi: 10.1007/s12273-017-0363-2 URL |
[7] | 蔡晖, 高伯阳, 祁万春, 等. “双碳”背景下线间潮流控制器多目标协调控制策略[J]. 上海交通大学学报, 2021, 55(12): 1608-1618. |
CAI Hui, GAO Boyang, QI Wanchun, et al. A coordination control strategy of interline power flow controller in carbon peaking and carbon neutrality[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1608-1618. | |
[8] | 杨博, 俞磊, 王俊婷, 等. 基于自适应蝠鲼觅食优化算法的分布式电源选址定容[J]. 上海交通大学学报, 2021, 55(12): 1673-1688. |
YANG Bo, YU Lei, WANG Junting, et al. Optimal sizing and placement of distributed generation based on adaptive manta ray foraging optimization[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1673-1688. | |
[9] | 薛晗, 邵哲平, 潘家财, 等. 基于文化萤火虫算法-广义回归神经网络的船舶交通流量预测[J]. 上海交通大学学报, 2020, 54(4): 421-429. |
XUE Han, SHAO Zheping, PAN Jiacai, et al. Vessel traffic flow prediction based on CFA-GRNN algorithm[J]. Journal of Shanghai Jiao Tong University, 2020, 54(4): 421-429. | |
[10] | AFROZ Z, SHAFIULLAH G M, URMEE T, et al. Predictive modelling and optimization of HVAC systems using neural network and particle swarm optimization algorithm[J]. Building & Environment, 2022, 209: 108681. |
[11] | MOHANTY S, PANDA S, SAHU B K, et al. A genetic algorithm-based demand side management program for implementation of virtual power plant integrating distributed energy resources[C]// Innovation in Electrical Power Engineering, Communication & Computing Technology. Bhubaneswar, India: Springer Singapore, 2022: 469-481. |
[12] | CHELLAMANI G K, CHANDRAMANI P V. An optimized methodical energy management system for residential consumers considering price-driven demand response using satin bowerbird optimization[J]. Journal of Electrical Engineering & Technology, 2021, 15(2): 955-967. |
[13] |
TIAN C S, HAO Y, HU J M. A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization[J]. Applied Energy, 2018, 231: 301-319.
doi: 10.1016/j.apenergy.2018.09.012 URL |
[14] |
RAGHAV L P, KUMAR R S, RAJU D K, et al. Analytic Hierarchy Process (AHP)-Swarm intelligence based flexible demand response management of grid-connected microgrid[J]. Applied Energy, 2022, 306: 118058.
doi: 10.1016/j.apenergy.2021.118058 URL |
[15] | 黄敬宇. 融合t分布和Tent混沌映射的麻雀搜索算法研究[D]. 兰州: 兰州大学, 2021. |
HUANG Jingyu. Research on sparrow search algorithm based on fusion of t distribution and tent chaotic mapping[D]. Lanzhou: Lanzhou University, 2021. | |
[16] | 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720. |
LV X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics & Astronautics, 2021, 47(8): 1712-1720. | |
[17] |
KUMAR GANTI P, NAIK H, KANUNGO BARADA M. Environmental impact analysis and enhancement of factors affecting the photovoltaic (PV) energy utilization in mining industry by sparrow search optimization based gradient boosting decision tree approach[J]. Energy, 2022, 244: 122561.
doi: 10.1016/j.energy.2021.122561 URL |
[18] | XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. |
[19] | YAO Y, YU Y B. Modeling and control in air-conditioning systems[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. |
[20] | 陈阳, 姚晔. 基于天牛须-粒子群优化算法的大型中央空调系统节能控制[J]. 制冷学报, 2021, 42(4): 43-49. |
CHEN Yang, YAO Ye. Study on energy-saving control of large central air-conditioning system based on BAS-PSO[J]. Journal of Refrigeration, 2021, 42(4): 43-49. |
[1] | 王亚伦, 周涛, 陈中, 王毅, 权浩. 基于堆叠式降噪自动编码器和深度神经网络的风电调频逐步惯性智能控制[J]. 上海交通大学学报, 2023, 57(11): 1477-1491. |
[2] | 李苏杭, 黄晨晨, 王勋宝, 姚金华. 一种基于轮盘赌策略的防空部署方法[J]. 空天防御, 2022, 5(2): 42-48. |
[3] | 周毅, 周良才, 丁佳立, 高佳宁. 基于深度强化学习的电网拓扑优化及潮流控制[J]. 上海交通大学学报, 2021, 55(S2): 7-14. |
[4] | 韩红桂, 杨士恒, 张璐, 乔俊飞. 城市污水处理过程出水氨氮优化控制[J]. 上海交通大学学报, 2020, 54(9): 916-923. |
[5] | 李劲松a,杨炼b,王乐天a. 小型四旋翼无人直升机自适应优化控制[J]. 上海交通大学学报(自然版), 2015, 49(02): 202-208. |
[6] | 白锐1,2,任群英1,郭万里1. 生料浆制备过程的优化控制软件[J]. 上海交通大学学报(自然版), 2014, 48(07): 998-1003. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||