上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (6): 710-721.doi: 10.16183/j.cnki.jsjtu.2021.071
收稿日期:
2021-05-06
出版日期:
2022-06-28
发布日期:
2022-07-04
通讯作者:
龚景海
E-mail:gongjh@sjtu.edu.cn
作者简介:
侯彦果 (1992-),男,湖南省长沙市人,博士生,主要从事薄壁钢结构力学性能研究.
HOU Yanguo1, LI Zhanjie2, GONG Jinghai1()
Received:
2021-05-06
Online:
2022-06-28
Published:
2022-07-04
Contact:
GONG Jinghai
E-mail:gongjh@sjtu.edu.cn
摘要:
有限条法是一种经典的分析薄壁构件屈曲的方法,传统的有限条法在长度方向采用三角函数,无法分析沿长度方向间隔布置加劲肋的构件的屈曲问题,而复合有限条法恰好能弥补这一缺陷.基于复合有限条法,使用平面单元和壳单元分别模拟加劲肋对分析结果的影响.相比于壳单元,平面单元的自由度数量更少, 矩阵组合更简便.而壳单元因为考虑到面外的位移自由度而更全面.分别采用两种加劲肋单元分布带加劲肋的构件,发现壳单元和平面单元对屈曲结果的影响甚小,两者之间差异的绝对平均值在0.75%以内,并且屈曲承载力和模态与有限元结果皆能良好吻合.两种形式的复合有限条法与有限元差异的绝对平均值控制在5%以内.平面单元加劲肋的精度已经满足预期要求,有助于减少程序计算量和简化分析的复杂程度;在划分单元较密的情况下,能显著提升计算速度.
中图分类号:
侯彦果, 李占杰, 龚景海. 平面单元和壳单元在复合有限条法中模拟加劲肋的应用[J]. 上海交通大学学报, 2022, 56(6): 710-721.
HOU Yanguo, LI Zhanjie, GONG Jinghai. Application of Plane Elements and Shell Elements in Imitating Ribs of Members in Compound Strip Method[J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 710-721.
[1] | CHEUNG Y. Finite strip method in structural analysis[M]. Oxford: Pergamon Press, 1976: 1-24. |
[2] |
BRADFORD M A, AZHARI M. Buckling of plates with different end conditions using the finite strip method[J]. Computers & Structures, 1995, 56(1): 75-83.
doi: 10.1016/0045-7949(94)00528-B URL |
[3] | SCHAFER B W, ÁDÁNY S. Buckling analysis of cold-formed steel members using CUFSM: Conventional and constrained finite strip methods[C]∥18th International Specialty Conference on Cold-Formed Steel Structures. Rolla, USA: United States University of Missouri Rolla, 2006. |
[4] | LI Z J, SCHAFER B. Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM: Conventional and constrained finite strip methods[C]∥20th International Specialty Conference on Cold-Formed Steel Structures. St. Louis, MO, USA: Missouri University of Science and Technology, 2010. |
[5] | 申富林, 蔡长青. 基于集成有限条法的大跨度斜拉桥的地震响应研究[J]. 山东农业大学学报(自然科学版), 2020, 51(2): 316-319. |
SHEN Fulin, CAI Changqing. Study on seismic response of long-span cable-stayed bridge based on integrated finite strip method[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2020, 51(2): 316-319. | |
[6] | 葛威延, 何斌, 安逸, 等. 矩形薄板屈曲分析的高阶有限条传递矩阵法[J]. 应用力学学报, 2018, 35(3): 558-563. |
GE Weiyan, HE Bin, AN Yi, et al. Higher-order finite strip transfer matrix for buckling analysis of rectangular thin plate[J]. Chinese Journal of Applied Mechanics, 2018, 35(3): 558-563. | |
[7] | 龙跃凌, 盘创汉, 范文浩. 基于有限条法的带约束拉杆方形钢管混凝土柱局部屈曲模型[J]. 工业建筑, 2017, 47(12): 174-180. |
LONG Yueling, PAN Chuanghan, FAN Wenhao. Local buckling model of square cft columns with binding bars based on finite strip method[J]. Industrial Construction, 2017, 47(12): 174-180. | |
[8] | 孙冰. 冷弯薄壁卷边型钢构件有限条法屈曲计算误差分析[J]. 科学技术与工程, 2017, 17(14): 173-178. |
SUN Bing. Error analysis of elastic buckling for cold-formed steel members by finite strip method[J]. Science Technology and Engineering, 2017, 17(14): 173-178. | |
[9] | 刘冬梅, 何斌, 方媛, 等. 单支开口薄壁梁屈曲分析的Riccati有限条传递矩阵法[J]. 应用力学学报, 2019, 36(3): 588-594. |
LIU Dongmei, HE Bin, FANG Yuan, et al. Buckling analysis of single-branched open cross-section thin-walled beams via Riccati finite strip transfer matrix method[J]. Chinese Journal of Applied Mechanics, 2019, 36(3): 588-594. | |
[10] | 高亚南. 矫直过程的弹塑性B样条有限条分析[D]. 秦皇岛: 燕山大学, 2016. |
GAO Yanan. Plastoelastic B spline finite strip analysis of leveling process[D]. Qinhuangdao: Yanshan University, 2016. | |
[11] |
FAN S C, CHEUNG Y K. Analysis of shallow shells by spline finite strip method[J]. Engineering Structures, 1983, 5(4): 255-263.
doi: 10.1016/0141-0296(83)90004-4 URL |
[12] | FAN S C. Spline finite strip in structural analysis[D]. Hong Kong: The University of Hong Kong, 1982. |
[13] |
SEIF A E, KABIR M Z. Spline finite strip modelling of post-buckling behaviour in the notched tensioned sheets considering analytical approaches for fracture and fatigue[J]. Thin-Walled Structures, 2019, 137: 541-560.
doi: 10.1016/j.tws.2019.01.028 URL |
[14] | 王宗木, 沈鹏程. 样条能量法解加肋板壳的静力问题[J]. 安徽建筑工业学院学报(自然科学版), 1995, 3(1): 11-14. |
WANG Zongmu, SHEN Pengcheng. Static analysis of ribbed plates and shells by using b-spline functions[J]. Journal of Anhui Institute of Architecture, 1995, 3(1): 11-14. | |
[15] |
ZHEN L, QIAO P Z, ZHONG J B, et al. Design of steel pipe-jacking based on buckling analysis by finite strip method[J]. Engineering Structures, 2017, 132: 139-151.
doi: 10.1016/j.engstruct.2016.11.016 URL |
[16] |
WANG Y L, QIAO P Z, LU L J. Buckling analysis of steel jacking pipes embedded in elastic tensionless foundation based on spline finite strip method[J]. Thin-Walled Structures, 2018, 130: 449-457.
doi: 10.1016/j.tws.2018.06.010 URL |
[17] |
CHEN C J, GUTKOWSKI R M, PUCKETT J A. B-spline compound strip analysis of stiffened plates under transverse loading[J]. Computers & Structures, 1990, 34(2): 337-347.
doi: 10.1016/0045-7949(90)90378-F URL |
[18] |
WANG Y L, QIAO P Z. Improved buckling analysis of stiffened laminated composite plates by spline finite strip method[J]. Composite Structures, 2021, 255: 112936.
doi: 10.1016/j.compstruct.2020.112936 URL |
[19] |
ABBASI M, KHEZRI M, RASMUSSEN K J R, et al. Elastic buckling analysis of cold-formed steel built-up sections with discrete fasteners using the compound strip method[J]. Thin-Walled Structures, 2018, 124: 58-71.
doi: 10.1016/j.tws.2017.11.046 URL |
[20] | HOANG T, ÁDÁNY S. Torsional buckling of thin-walled columns with transverse stiffeners: Analytical studies[J]. Periodica Polytechnica Civil Engineering, 2020, 64: 370-386. |
[21] | ZHEN L, CHEN J J, WANG J H, et al. Effect of orthogonal stiffeners on the stability of axially compressed steel jacking pipe[J]. Journal of Shanghai Jiao Tong University (Science), 2017, 22(5): 536-540. |
[22] |
HOU Y G, LI Z J, GONG J H. A compound strip method for static and buckling analyses of thin-walled members with transverse stiffeners[J]. Thin-Walled Structures, 2021, 165: 107829.
doi: 10.1016/j.tws.2021.107829 URL |
[23] | MOAVENI S. Finite element analysis theory and application with ANSYS[M]. 3rd ed. Upper Saddle River, New Jersey, USA: Prentice Hall, 1999. |
[1] | 吴韬, 莫时旭, 向勇斌, 邹泽群, 郑艳. 刚性基底弹性转动约束矩形板各受载条件下屈曲分析[J]. 上海交通大学学报, 2022, 56(1): 114-126. |
[2] | 聂小春,晏致涛,施菁华,游溢. 双柱悬索拉线塔的精细化模拟及模型分析[J]. 上海交通大学学报, 2019, 53(9): 1066-1073. |
[3] | 闫棣, 苏祺, 李四平. 屈曲问题有限元模拟的随机缺陷法[J]. 上海交通大学学报, 2019, 53(1): 19-25. |
[4] | 罗世勇, 王德军, 刘晓霞, 黄俊. 挠性管在深水海底管道中的应用[J]. 海洋工程装备与技术, 2018, 5(增刊): 53-56. |
[5] | 夏秋玲. 高温埋设管线的隆起屈曲分析[J]. 海洋工程装备与技术, 2018, 5(1): 1-5. |
[6] | 邱介尧a, 李国强a, b. 开圆孔波纹腹板钢梁弹性抗剪屈曲[J]. 上海交通大学学报, 2016, 50(03): 357-363. |
[7] | 蔡祈耀1,陈务军1,张大旭1,彭福军2,房光强2. 空间薄壁CFRP豆荚杆悬臂屈曲分析及试验[J]. 上海交通大学学报(自然版), 2016, 50(01): 145-151. |
[8] | 李旭, 李庆, 张英. 深水海管止屈器设计方法研究[J]. 海洋工程装备与技术, 2014, 1(3): 227-229. |
[9] | . 《船舶结构设计》简介[J]. 海洋工程装备与技术, 2014, 1(2): 110-110. |
[10] | 朱甚,李四平. 横向纤维搭桥下矩形脱层热屈曲数值模拟[J]. 上海交通大学学报(自然版), 2014, 48(12): 1784-1787. |
[11] | 姬振华, 王德禹. 纯剪切横向密加筋板的加筋弯曲刚度门槛值 [J]. 上海交通大学学报(自然版), 2012, 46(08): 1269-1273. |
[12] | 李真, 陈秀华, 汪海. 基于蚁群算法的复合材料层合板屈曲优化[J]. 上海交通大学学报(自然版), 2012, 46(05): 768-773. |
[13] | 陈楠, 陈锦剑, 夏小和, 王建华, 钟俊彬. 长钢顶管稳定特性的有限元分析[J]. 上海交通大学学报, 2012, 46(05): 832-836. |
[14] | 翟三栋, 张扬, 李四平. 有纤维搭桥的矩形脱层屈曲[J]. 上海交通大学学报(自然版), 2011, 45(10): 1475-1478. |
[15] | 朱波, 周叮, 刘伟庆. 含脱层层合简支梁的屈曲模态[J]. 上海交通大学学报(自然版), 2011, 45(10): 1460-1464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||