[1]CANDES E J. The restricted isometry property and its implication for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589-592.
[2]RIVENSON Y, STERN A. Conditions for practicing compressive fresnel holography[J]. Optics Letters, 2011, 36(17): 3365-3367.
[3]JAVIDI B, GARCIA J, MIC V, et al. Phase-shifting gabor holography[J]. Optics Letters, 2009, 34(10): 1492-1494.
[4]李科, 李军. 基于压缩传感的全息图压缩研究[J]. 华南师范大学学报, 2012, 44(4): 61-65.
LI Ke, LI Jun. Hologram compression based on compressive sensing[J]. Journal of South China Normal University, 2012, 44(4): 61-65.
[5]简献忠, 周海, 乔静远, 等. 基于全变差重构算法的数字全息研究[J]. 激光技术, 2014, 38(2): 236-239.
JIAN Xianzhong, ZHOU Hai, QIAO Jingyuan, et al. Study on digital holography based on the total variation reconstruction algorithm[J]. Laser Technology, 2014, 38(2): 236-239.
[6]STERN A, JAVIDI B, RIVENSON Y. Compressive fresnel holography[J]. Journal of Display Technology, 2010, 6(10): 506-509.
[7]BIOUCAS-DLAS J M, FIGUEIREDO M A. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transaction on Image Processing, 2008, 16(12): 2992-3004.
[8]BRADY D J, CHOI K, MARKS D L, et al. Compressive holography[J]. Optics Express, 2009, 17(15): 13040-13049.
[9]RIVENSON Y, STERN A, JAVIDI B. Improved depth resolution by single-exposure in-line compressive holography[J]. Applied Optics, 2013, 52(1): 223-231.
[10]RIVENSON Y, STERN A, ROSEN J. Compressive multiple view projection incoherent holography[J]. Optics Express, 2011, 19(7): 6109-6118.
[11]王侠, 王开, 王青云, 等.压缩感知中确定性随机观测矩阵构造[J].信号处理, 2014, 30(4): 436-442.
WANG Xia, WANG Kai, WANG Qingyun, et al. Deterministic random measurement matrices construction for compressed sensing[J]. Journal of Signal Processing, 2014, 30(4): 436-442.
[12]SONG C B, XIA S T, LIU X J. Subspace thresholding pursuit: A reconstruction algorithm for compressed sensing[C]∥2015 IEEE International Symposium on Information Theory (ISIT). Hong Kong: IEEE, 2015: 536-540.
[13]DAUBECHIES I, DEFRISE M, MOL C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J].Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.
[14]FIGUEIREDO M A T, NOWAK R D. An EM algorithm for wavelet-based image restoration[J]. IEEE Transactions on Image Processing, 2003, 12(8): 906-916.
[15]ZHANG Y D, WANG S H, JI G L, et al. Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging[J].Information Sciences, 2015, 322(1): 115-132.
[16]FORNASIER M, RAUHUT H. Iterative thresholding algorithms[J]. Applied and Computational Harmonic Analysis, 2008, 25(2): 187-208.
[17]GAO L F, LI C. An adaptive TV model for image denoising[C]∥International Conference on Natural Computationn. Shenyang: IEEE, 2013: 766-770. |