Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (4): 421-433.doi: 10.16183/j.cnki.jsjtu.2019.329
Special Issue: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“工程力学”专题
Previous Articles Next Articles
LAI Zhiqiang1,2, JIANG Enhui1, ZHAO Lianjun1(), ZHOU Wei3, TIAN Wenxiang3, MA Gang3
Received:
2019-11-15
Online:
2021-04-28
Published:
2021-04-30
Contact:
ZHAO Lianjun
E-mail:zhaolianjun88@163.com
CLC Number:
LAI Zhiqiang, JIANG Enhui, ZHAO Lianjun, ZHOU Wei, TIAN Wenxiang, MA Gang. Review of Movement and Accumulation Characteristics of Granular Column Collapse[J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 421-433.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.329
Tab.1
Distribution of c 1 , a L , c 2 , a R , c 3 and a H parameter values in previous research
序号 | 文献 | 方法 | 模型 | c1 (c2) | aL(aR) | c3 | aH |
---|---|---|---|---|---|---|---|
1 | [ | 物理试验 | 圆柱体 | 0.50 | 0.7 | — | 0.7 |
2 | [ | 物理试验 | 圆柱体 | 0.50 | 1.7 | 0.17 | 1.7 |
3 | [ | DEM数值模拟 | 单向长方体 | 0.70 | 3.0 | — | — |
4 | [ | 物理试验 | 单向长方体 | 0.66 | 2.3 | 0.40 | 1.2 |
5 | [ | DEM数值模拟 | 双向长方体 | 0.68~0.73 | 2.0 | 0.35 | 1.0 |
6 | [ | DEM数值模拟 | 单向长方体 | 0.67 | 3.0 | 0.33 | 0.7 |
7 | [ | FEM数值模拟 | 单向长方体 | 0.68~0.77 | 4.0 | — | — |
8 | [ | 物理试验 | 圆柱体 | 0.50 | 3.0 | — | 0.7 |
9 | [ | 物理试验 | 单向长方体 | 0.67 | 3.0 | 0.33 | 0.7 |
10 | [ | DEM数值模拟 | 单向长方体 | 0.68~0.71 | 2.5 | — | — |
11 | [ | 物理试验 | 单向长方体 | 0.65~0.75 | 2.0 | 0.50~0.60 | 2.0 |
12 | [ | 物理试验、DEM数值模拟 | 单向长方体 | 0.69~0.84 | 2.2~4.0 | — | 2.0 |
13 | [ | 物理试验 | 圆柱体 | 0.66 | 1.8 | 0.09 | 0.8 |
14 | [ | 物理试验 | 单向长方体 | 0.50~0.69 | 1.1~1.6 | — | 5.0~7.0 |
[1] |
LAJEUNESSE E, MANGENEY-CASTELNAU A, VILOTTE J. Spreading of a granular mass on a horizontal plane[J]. Physics of Fluids, 2004, 16(7):2371-2381.
doi: 10.1063/1.1736611 URL |
[2] |
LUBE G, HUPPERT H E, SPARKS R S J, et al. Axisymmetric collapses of granular columns[J]. Journal of Fluid Mechanics, 2004, 508:175-199.
doi: 10.1017/S0022112004009036 URL |
[3] |
UTILI S, ZHAO T, HOULSBY G T. 3D DEM investigation of granular column collapse: Evaluation of debris motion and its destructive power[J]. Engineering Geology, 2015, 186:3-16.
doi: 10.1016/j.enggeo.2014.08.018 URL |
[4] |
LANGLOIS V J, QUIQUEREZ A, ALLEMAND P. Collapse of a two-dimensional brittle granular column: Implications for understanding dynamic rock fragmentation in a landslide[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9):1866-1880.
doi: 10.1002/2014JF003330 URL |
[5] |
KERMANI E, QIU T, LI T. Simulation of collapse of granular columns using the discrete element method[J]. International Journal of Geomechanics, 2015, 15(6):04015004.
doi: 10.1061/(ASCE)GM.1943-5622.0000467 URL |
[6] | LUBE G, HUPPERT H E, SPARKS R S J, et al. Collapses of two-dimensional granular columns[J]. Physical Review E, 2005, 72(4):041301. |
[7] |
KERSWELL R R. Dam break with Coulomb friction: A model for granular slumping?[J]. Physics of Fluids, 2005, 17(5):057101.
doi: 10.1063/1.1870592 URL |
[8] |
LARRIEU E, STARON L, HINCH E J. Raining into shallow water as a description of the collapse of a column of grains[J]. Journal of Fluid Mechanics, 2006, 554:259-270.
doi: 10.1017/S0022112005007974 URL |
[9] |
LEE C, HUANG Z H, CHIEW Y. A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column[J]. Physics of Fluids, 2015, 27(11):113303.
doi: 10.1063/1.4935626 URL |
[10] | DOYLE E E, HOGG A J, MADER H M, et al. Modeling dense pyroclastic basal flows from collapsing columns[J]. Geophysical Research Letters, 2008, 35(4):1-5. |
[11] |
费明龙, 徐小蓉, 孙其诚, 等. 颗粒介质固-流态转变的理论分析及实验研究[J]. 力学学报, 2016, 48(1):48-55.
doi: 10.6052/0459-1879-15-290 |
FEI Minglong, XU Xiaorong, SUN Qicheng, et al. Studies on the transition between solid- and fluid-like states of granular materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):48-55. | |
[12] | 孙倩, 彭天骥, 严安, 等. 密集颗粒流动的连续性方法应用研究[J]. 原子能科学技术, 2019, 53(12):2367-2374. |
SUN Qian, PENG Tianji, YAN An, et al. Application of continuum modeling of dense granular flow[J]. Atomic Energy Science and Technology, 2019, 53(12):2367-2374. | |
[13] |
HOLSAPPLE K A. Modeling granular material flows: The angle of repose, fluidization and the cliff collapse problem[J]. Planetary and Space Science, 2013, 82/83:11-26.
doi: 10.1016/j.pss.2013.03.001 URL |
[14] |
LAGRÉE P Y, STARON L, POPINET S. The granular column collapse as a continuum: Validity of a two-dimensional Navier-Stokes model with a μ(I)-rheology[J]. Journal of Fluid Mechanics, 2011, 686(6):378-408.
doi: 10.1017/jfm.2011.335 URL |
[15] |
STARON L, HINCH E J. Study of the collapse of granular columns using two-dimensional discrete-grain simulation[J]. Journal of Fluid Mechanics, 2005, 545:1-27.
doi: 10.1017/S0022112005006415 URL |
[16] |
GIROLAMI L, HERGAULT V, VINAY G, et al. A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: Comparison between numerical results and experiments[J]. Granular Matter, 2012, 14(3):381-392.
doi: 10.1007/s10035-012-0342-3 URL |
[17] |
ZHANG X, KRABBENHOFT K, SHENG D C. Particle finite element analysis of the granular column collapse problem[J]. Granular Matter, 2014, 16(4):609-619.
doi: 10.1007/s10035-014-0505-5 URL |
[18] | 张雪, 盛岱超. 一种模拟土体流动的连续体数值方法[J]. 岩土工程学报, 2016, 38(3):562-569. |
ZHANG Xue, SHENG Daichao. Continuum approach for modelling soil flow in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3):562-569. | |
[19] | CROSTA G B, IMPOSIMATO S, RODDEMAN D. Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F3):1-19. |
[20] |
WANG C, WANG Y Q, PENG C, et al. Two-fluid smoothed particle hydrodynamics simulation of submerged granular column collapse[J]. Mechanics Research Communications, 2017, 79:15-23.
doi: 10.1016/j.mechrescom.2016.12.001 URL |
[21] |
XU T B, JIN Y C. Modeling free-surface flows of granular column collapses using a mesh-free method[J]. Powder Technology, 2016, 291:20-34.
doi: 10.1016/j.powtec.2015.12.005 URL |
[22] |
FERN E J, SOGA K. The role of constitutive models in MPM simulations of granular column collapses[J]. Acta Geotechnica, 2016, 11(3):659-678.
doi: 10.1007/s11440-016-0436-x URL |
[23] |
LAJEUNESSE E, MONNIER J B, HOMSY G M. Granular slumping on a horizontal surface[J]. Physics of Fluids, 2005, 17(10):103302.
doi: 10.1063/1.2087687 URL |
[24] |
RANKINE W J M. On the stability of loose earth[J]. Proceedings of the Royal Society of London, 1857, 8:185-187.
doi: 10.1098/rspl.1856.0049 URL |
[25] |
FERN E J, SOGA K. Granular column collapse of wet sand[J]. Procedia Engineering, 2017, 175:14-20.
doi: 10.1016/j.proeng.2017.01.005 URL |
[26] |
XU X R, SUN Q C, JIN F, et al. Measurements of velocity and pressure of a collapsing granular pile[J]. Powder Technology, 2016, 303:147-155.
doi: 10.1016/j.powtec.2016.09.036 URL |
[27] |
MAST C M, ARDUINO P, MACKENZIE-HELNWEIN P, et al. Simulating granular column collapse using the Material Point Method[J]. Acta Geotechnica, 2015, 10(1):101-116.
doi: 10.1007/s11440-014-0309-0 URL |
[28] |
ZENIT R. Computer simulations of the collapse of a granular column[J]. Physics of Fluids, 2005, 17(3):031703.
doi: 10.1063/1.1862240 URL |
[29] |
RONDON L, POULIQUEN O, AUSSILLOUS P. Granular collapse in a fluid: Role of the initial volume fraction[J]. Physics of Fluids, 2011, 23(7):073301.
doi: 10.1063/1.3594200 URL |
[30] | YANG G C, JING L, KWOK C Y, et al. Pore-scale simulation of immersed granular collapse: Implications to submarine landslides[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(1):1-26. |
[31] |
LEE C H. Underwater collapse of a loosely packed granular column on an inclined plane: Effects of the Darcy number[J]. AIP Advances, 2019, 9(9):095046.
doi: 10.1063/1.5119013 URL |
[32] |
PETERS J F, MUTHUSWAMY M, WIBOWO J, et al. Characterization of force chains in granular material[J]. Physical Review E, 2005, 72(4):041307.
doi: 10.1103/PhysRevE.72.041307 URL |
[33] |
TORDESILLAS A, WALKER D M, LIN Q. Force cycles and force chains[J]. Physical Review E, 2010, 81(1):011302.
doi: 10.1103/PhysRevE.81.011302 URL |
[34] |
ARTONI R, SANTOMASO A C, GABRIELI F, et al. Collapse of quasi-two-dimensional wet granular columns[J]. Physical Review E, 2013, 87(3):032205.
doi: 10.1103/PhysRevE.87.032205 URL |
[35] |
GABRIELI F, ARTONI R, SANTOMASO A, et al. Discrete particle simulations and experiments on the collapse of wet granular columns[J]. Physics of Fluids, 2013, 25(10):103303.
doi: 10.1063/1.4826622 URL |
[36] |
HUANG B L, WANG J, ZHANG Q, et al. Energy conversion and deposition behaviour in gravitational collapse of granular columns[J]. Journal of Mountain Science, 2020, 17(1):216-229.
doi: 10.1007/s11629-019-5602-9 URL |
[37] |
CABRERA M, ESTRADA N. Granular column collapse: Analysis of grain-size effects[J]. Physical Review E, 2019, 99(1):012905.
doi: 10.1103/PhysRevE.99.012905 URL |
[38] |
PHILLIPS J C, HOGG A J, KERSWELL R R, et al. Enhanced mobility of granular mixtures of fine and coarse particles[J]. Earth and Planetary Science Letters, 2006, 246(3/4):466-480.
doi: 10.1016/j.epsl.2006.04.007 URL |
[39] |
DEGAETANO M, LACAZE L, PHILLIPS J C. The influence of localised size reorganisation on short-duration bidispersed granular flows[J]. The European Physical Journal E, 2013, 36(4):1-9.
doi: 10.1140/epje/i2013-13001-8 URL |
[40] |
VALLEJO L E, ESPITIA J M, CAICEDO B. The influence of the fractal particle size distribution on the mobility of dry granular materials[J]. EPJ Web of Conferences, 2017, 140:03032.
doi: 10.1051/epjconf/201714003032 URL |
[41] |
HOOKE R L B, IVERSON N R. Grain-size distribution in deforming subglacial tills: Role of grain fracture[J]. Geology, 1995, 23(1):57-60.
doi: 10.1130/0091-7613(1995)023<0057:GSDIDS>2.3.CO;2 URL |
[42] | LAI Z, VALLEJO L E, ZHOU W, et al. Collapse of granular columns with fractal particle size distribution: Implications for understanding the role of small particles in granular flows[J]. Geophysical Research Letters, 2017, 44(24):12181-12189. |
[43] |
TAPIA-MCCLUNG H, ZENIT R. Computer simulations of the collapse of columns formed by elongated grains[J]. Physical Review E, 2012, 85(6):061304.
doi: 10.1103/PhysRevE.85.061304 URL |
[44] | 来志强, 周伟, 杨利福, 等. 基于离散单元法的溜砂坡堆积形态数值研究[J]. 中南大学学报(自然科学版), 2017, 48(7):1839-1848. |
LAI Zhiqiang, ZHOU Wei, YANG Lifu, et al. Numerical study of accumulation state for sand-sliding slope based on distinct element method[J]. Journal of Central South University (Science and Technology), 2017, 48(7):1839-1848. | |
[45] | 李鹏鹏, 周伟, 熊美林, 等. 复杂形状颗粒DEM模拟及其对宏观力学响应影响研究[J]. 武汉大学学报(工学版), 2018, 51(6):478-486. |
LI Pengpeng, ZHOU Wei, XIONG Meilin, et al. Study of DEM modeling of irregular shaped particle and its influence on macromechanical response[J]. Engineering Journal of Wuhan University, 2018, 51(6):478-486. | |
[46] |
OWEN P J, CLEARY P W, MÉRIAUX C. Quasi-static fall of planar granular columns: Comparison of 2D and 3D discrete element modelling with laboratory experiments[J]. Geomechanics and Geoengineering, 2009, 4(1):55-77.
doi: 10.1080/17486020902767388 URL |
[47] |
TREPANIER M, FRANKLIN S V. Column collapse of granular rods[J]. Physical Review E, 2010, 82(1):011308.
doi: 10.1103/PhysRevE.82.011308 URL |
[48] | 张成功, 尹振宇, 吴则祥, 等. 颗粒形状对粒状材料圆柱塌落影响的三维离散元模拟[J]. 岩土力学, 2019, 40(3):1197-1203. |
ZHANG Chenggong, YIN Zhenyu, WU Zexiang, et al. Three-dimensional discrete element simulation of influence of particle shape on granular column collapse[J]. Rock and Soil Mechanics, 2019, 40(3):1197-1203. | |
[49] | CLEARY P W, FRANK M . Three-dimensional discrete element simulation of axi-symmetric collapses of granular columns[EB/OL].(2006-06-22) [2019-09-09]. https://www.researchgate.net/profile/Paul_Cleary2/publication/228530783_Three-Dimensional_Discrete_Element_Simulation_of_Axi-symmetric_Collapses_of_Granular_Columns/links/0c96053c3a9e9dfb82000000/Three-Dimensional-Discrete-Element-Simulation-of-Axi-symmetric-Collapses-of-Granular-Columns.pdf. |
[50] | LO C Y, BOLTON M, CHENG Y P. Discrete element simulation of granular column collapse[C]//AIP Conference Proceedings. 2009, 1145(1):627-630. |
[51] |
STARON L, HINCH E J. The spreading of a granular mass: Role of grain properties and initial conditions[J]. Granular Matter, 2007, 9(3/4):205-217.
doi: 10.1007/s10035-006-0033-z URL |
[52] | JING L, YANG G C, KWOK C Y, et al. Dynamics and scaling laws of underwater granular collapse with varying aspect ratios[J]. Physical Review E, 2018, 98(4):042901. |
[53] |
DAVIES T R, MCSAVENEY M J. The role of rock fragmentation in the motion of large landslides[J]. Engineering Geology, 2009, 109(1/2):67-79.
doi: 10.1016/j.enggeo.2008.11.004 URL |
[54] | 陈兴, 马刚, 周伟, 等. 无序性对脆性材料冲击破碎的影响[J]. 物理学报, 2018, 67(14):219-228. |
CHEN Xing, MA Gang, ZHOU Wei, et al. Effects of material disorder on impact fragmentation of brittle spheres[J]. Acta Physica Sinica, 2018, 67(14):219-228. | |
[55] |
SANTOMASO A C, VOLPATO S, GABRIELI F. Collapse and runout of granular columns in pendular state[J]. Physics of Fluids, 2018, 30(6):063301.
doi: 10.1063/1.5030779 URL |
[56] |
BOUGOUIN A, LACAZE L, BONOMETTI T. Collapse of a liquid-saturated granular column on a horizontal plane[J]. Physical Review Fluids, 2019, 4(12):124306.
doi: 10.1103/PhysRevFluids.4.124306 URL |
[57] |
MÉRIAUX C. Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall[J]. Physics of Fluids, 2006, 18(9):093301.
doi: 10.1063/1.2335477 URL |
[58] |
ZHU H W, FENG Y D, LU D F, et al. Dynamics of quasi-static collapse process of a binary granular column[J]. Powder Technology, 2018, 339:970-973.
doi: 10.1016/j.powtec.2018.08.051 URL |
[59] |
KERMANI E, QIU T. Simulation of quasi-static axisymmetric collapse of granular columns using smoothed particle hydrodynamics and discrete element methods[J]. Acta Geotechnica, 2020, 15(2):423-437.
doi: 10.1007/s11440-018-0707-9 URL |
[60] |
GIROLAMI L, WACHS A, VINAY G. Unchannelized dam-break flows: Effects of the lateral spreading on the flow dynamics[J]. Physics of Fluids, 2013, 25(4):043306.
doi: 10.1063/1.4799129 URL |
[61] |
BALMFORTH N J, KERSWELL R R. Granular collapse in two dimensions[J]. Journal of Fluid Mechanics, 2005, 538:399-428.
doi: 10.1017/S0022112005005537 URL |
[62] |
LACAZE L, PHILLIPS J C, KERSWELL R R. Planar collapse of a granular column: Experiments and discrete element simulations[J]. Physics of Fluids, 2008, 20(6):063302.
doi: 10.1063/1.2929375 URL |
[63] |
WARNETT J M, DENISSENKO P, THOMAS P J, et al. Collapse of a granular column under rotation[J]. Powder Technology, 2014, 262:249-256.
doi: 10.1016/j.powtec.2014.04.030 URL |
[64] |
WARNETT J M, DENISSENKO P, THOMAS P J, et al. Scalings of axisymmetric granular column collapse[J]. Granular Matter, 2014, 16(1):115-124.
doi: 10.1007/s10035-013-0469-x URL |
[65] |
NIKOOEI M, MANZARI M T. Studying effect of entrainment on dynamics of debris flows using numerical simulation[J]. Computers & Geosciences, 2020, 134:104337.
doi: 10.1016/j.cageo.2019.104337 URL |
[66] |
ROCHE O, ATTALI M, MANGENEY A, et al. On the run-out distance of geophysical gravitational flows: Insight from fluidized granular collapse experiments[J]. Earth and Planetary Science Letters, 2011, 311(3/4):375-385.
doi: 10.1016/j.epsl.2011.09.023 URL |
[67] | 景路, 郭颂怡, 赵涛. 基于流体动力学-离散单元耦合算法的海底滑坡动力学分析[J]. 岩土力学, 2019, 40(1):388-394. |
JING Lu, KWOK Chungyee, ZHAO Tao. Understanding dynamics of submarine landslide with coupled CFD-DEM[J]. Rock and Soil Mechanics, 2019, 40(1):388-394. | |
[68] |
JING L, YANG G C, KWOK C Y, et al. Flow regimes and dynamic similarity of immersed granular collapse: A CFD-DEM investigation[J]. Powder Technology, 2019, 345:532-543.
doi: 10.1016/j.powtec.2019.01.029 URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||