上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (4): 422-430.doi: 10.16183/j.cnki.jsjtu.2020.347
收稿日期:
2020-10-23
出版日期:
2022-04-28
发布日期:
2022-05-07
通讯作者:
宋晓冰
E-mail:xbsong@sjtu.edu.cn
作者简介:
黄城均(1992-),男,浙江省绍兴市人,博士生,从事双钢板混凝土组合结构研究.
基金资助:
HUANG Chengjun, ZHU Tianyi, SONG Xiaobing()
Received:
2020-10-23
Online:
2022-04-28
Published:
2022-05-07
Contact:
SONG Xiaobing
E-mail:xbsong@sjtu.edu.cn
摘要:
针对承受平面内薄膜内力的双钢板混凝土(Steel-Concrete-Steel, SCS)单元,基于固体力学的3个基本方程(平衡条件、变形协调条件以及本构方程),提出了满足钢板Tresca屈服准则的SCS单元平面(主)应力空间的屈服准则.提出了一种结合试验数据确定SCS单元屈服荷载的计算方法,并将该方法应用于SCS单元双向拉压试验,分析9个不同配钢率和不同拉压比的SCS单元试件,将SCS单元的屈服准则与试验结果进行对比.此外,采用Ozaki的7个剪切单元试件进行进一步验证.结果表明,SCS单元的屈服准则与试验结果具有较好的一致性.
中图分类号:
黄城均, 朱天怡, 宋晓冰. 双钢板混凝土单元平面内屈服准则[J]. 上海交通大学学报, 2022, 56(4): 422-430.
HUANG Chengjun, ZHU Tianyi, SONG Xiaobing. In-Plane Yield Criterion of Steel-Concrete-Steel Unit Panel[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 422-430.
表1
SCS屈服准则与双向拉压试验的屈服荷载
试件 编号 | 试验结果 | SCS单元屈服准则 | 相对 误差/% | |||
---|---|---|---|---|---|---|
拉力/ kN | 压力/ kN | 拉力/ kN | 压力/ kN | |||
S3-51 | 840 | -4370 | 789 | -4106 | -6.05 | |
S3-10 | 0 | -6624 | 0 | -6977 | 5.32 | |
S5-11 | 1902 | -1902 | 2081 | -2081 | 9.33 | |
S5-41 | 1184 | -4386 | 1188 | -4400 | 0.31 | |
S6-01 | 2640 | 0 | 2640 | 0 | 0.00 | |
S6-21 | 1815 | -3213 | 1845 | -3264 | 1.61 | |
S6-41 | 1283 | -4472 | 1296 | -4517 | 1.00 | |
S6-81 | 756 | -6039 | 728 | -5812 | 3.75 | |
S6-10 | 0 | -7300 | 0 | -7473 | 2.36 | |
平均值 | 3.30 |
表2
SCS屈服准则与剪切试验的屈服荷载
试件编号 | 钢板 | 混凝土 fc(Ec)/MPa | 试验结果 | SCS单元屈服准则 | ||||
---|---|---|---|---|---|---|---|---|
As(Ap)/cm2 | fy( | 轴力/kN | 剪力/kN | 剪力/kN | 相对误差/% | |||
S2-00NN | 53.5(17.1) | 340(1.97×105) | 42.2(2.72×104) | 0 | 2290 | 2381 | 3.99 | |
S2-15NN | 53.5(17.1) | 340(1.97×105) | 41.6(2.77×104) | 353 | 2330 | 2564 | 10.04 | |
S2-30NN | 53.5(17.1) | 340(1.97×105) | 42.0(2.79×104) | 705 | 2490 | 2693 | 8.14 | |
S3-00NN | 75.4(16.9) | 351(1.99×105) | 41.9(2.71×104) | 0 | 3070 | 3176 | 3.44 | |
S3-15NN | 75.4(16.9) | 351(1.99×105) | 41.6(2.67×104) | 353 | 3130 | 3238 | 3.43 | |
S3-30NN | 75.4(16.9) | 351(1.99×105) | 40.1(2.70×104) | 705 | 3170 | 3307 | 4.33 | |
S4-00NN | 104.9(16.7) | 346(2.07×105) | 42.8(2.76×104) | 0 | 3560 | 3805 | 6.89 | |
平均值 | 5.75 |
[1] | 冷予冰, 宋晓冰, 葛鸿辉, 等. 钢板混凝土简支梁抗剪承载模式及承载力分析[J]. 土木工程学报, 2015, 48(7): 1-11. |
LENG Yubing, SONG Xiaobing, GE Honghui, et al. Study on shear resisting pattern and strength of simply supported steel-concrete-steel sandwich beams[J]. China Civil Engineering Journal, 2015, 48(7): 1-11. | |
[2] |
LENG Y B, SONG X B. Shear strength of steel-concrete-steel sandwich deep beams: A simplified approach[J]. Advances in Structural Engineering, 2019, 22(1): 42-53.
doi: 10.1177/1369433218777522 URL |
[3] |
SEO J, VARMA A H, SENER K, et al. Steel-plate composite (SC) walls: In-plane shear behavior, database, and design[J]. Journal of Constructional Steel Research, 2016, 119: 202-215.
doi: 10.1016/j.jcsr.2015.12.013 URL |
[4] | YAN J B, LIU X M, LIEW J Y R, et al. Steel-concrete-steel sandwich system in arctic offshore structure: Materials, experiments, and design[J]. Materials & Design, 2016, 91: 111-121. |
[5] |
YAN J B, LIEW J Y R, ZHANG M H, et al. Experimental and analytical study on ultimate strength behavior of steel-concrete-steel sandwich composite beam structures[J]. Materials and Structures, 2015, 48(5): 1523-1544.
doi: 10.1617/s11527-014-0252-4 URL |
[6] | 聂建国, 樊健生, 黄远, 等. 钢板剪力墙的试验研究[J]. 建筑结构学报, 2010, 31(9): 1-8. |
NIE Jianguo, FAN Jiansheng, HUANG Yuan, et al. Experimental research on steel plate shear wall[J]. Journal of Building Structures, 2010, 31(9): 1-8. | |
[7] | 蒋亚军, 陈思佳, 黄城均, 等. 核电用双钢板-混凝土单元轴心受压组合效应[J]. 浙江大学学报(工学版), 2019, 53(4): 724-731. |
JIANG Yajun, CHEN Sijia, HUANG Chengjun, et al. Composite effect of steel-concrete-steel elements under axial compression for nuclear power plant[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(4): 724-731. | |
[8] |
HUANG C J, CHEN S J, LENG Y B, et al. Experimental research on steel-concrete-steel sandwich panels subjected to biaxial tension compression[J]. Journal of Constructional Steel Research, 2019, 162: 105725.
doi: 10.1016/j.jcsr.2019.105725 URL |
[9] | SONG X B, CHU M, GE H H, et al. A failure criterion for steel-concrete composite walls [C]//International Conference on Sustainable Development of Critical Infrastructure. Reston, VA, USA: American Society of Civil Engineers, 2014: 324-331. |
[10] | 黄城均, 宋晓冰. 双钢板混凝土组合结构平面内破坏准则研究[J]. 建筑结构, 2019, 49(4): 123-128. |
HUANG Chengjun, SONG Xiaobing. Study on in-plane failure criterion of steel-concrete-steel composite structures[J]. Building Structure, 2019, 49(4): 123-128. | |
[11] | 中华人民共和国住房和城乡建设部. 核电站钢板混凝土结构技术标准: GB/T 51340-2018[S]. 北京: 中国计划出版社, 2018. |
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for steel plate concrete structures of nuclear power plants: GB/T 51340-2018[S]. Beijing: China Planning Press, 2016. | |
[12] |
OZAKI M, AKITA S, OSUGA H, et al. Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear[J]. Nuclear Engineering and Design, 2004, 228(1): 225-244.
doi: 10.1016/j.nucengdes.2003.06.010 URL |
[13] | USAMI S, AKIYAMA H, NARIKAWA M. Study on a concrete filled steel structure for nuclear plants. Part 2: Compressive loading tests on wall members[EB/OL]. (1995-08-13)[2020-09-20]. https://repository.lib.ncsu.edu/handle/1840.20/25529. |
[14] | 陈惠发, 萨利普A F. 混凝土和土的本构方程[M]. 余天庆. 北京: 中国建筑工业出版社, 2004. |
CHEN Waifa, SALIPU A F. Constitutive equations for materials of concrete and soil[M]. YU Tianqing. Beijing: China Architecture & Building Press, 2004. | |
[15] | BELARBI A, HSU T T C. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete[J]. ACI Structural Journal, 1994, 91(4): 465-474. |
[1] | 张成翊, 徐雪松. 波浪动力滑翔机母船与牵引机运动传递关系[J]. 上海交通大学学报, 2018, 52(2): 127-132. |
[2] | 王盛炜,徐雪松,姚宝恒,连琏. 针对立管重入井过程中等路径段加速度的改进型蚁群优化算法[J]. 上海交通大学学报(自然版), 2013, 47(10): 1585-1590. |
[3] | 李磊,张孟喜. 基于Drucker-Prager系列准则的抗剪强度参数分析[J]. 上海交通大学学报(自然版), 2013, 47(09): 1404-1408. |
[4] | 谢震,李萌,王武荣,韦习成. 高强度双相钢薄板拉弯成形试验及数值模拟[J]. 上海交通大学学报(自然版), 2013, 47(05): 760-765. |
[5] | 卢健,陈军,张飞飞,陈劼实. 基于三维Hill’48屈服准则的液压成形本构模型及数值验证[J]. 上海交通大学学报(自然版), 2013, 47(05): 791-794. |
[6] | 张远娇1, 邢爱国1, 朱继良2. 汶川地震触发牛圈沟高速远程滑坡-碎屑流动力学特性分析[J]. 上海交通大学学报(自然版), 2012, 46(10): 1665-1670. |
[7] | 骆华勋, 刘西拉. 钢筋混凝土环形截面构件的统一破坏模型[J]. 上海交通大学学报(自然版), 2012, 46(01): 152-157. |
[8] | 张英新, 王建华, 高绍武. 二维弹塑性自然单元法算法实现[J]. 上海交通大学学报, 2005, 39(05): 727-730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||