Articles

Numerical simulation on temperature and stress fields in beryllium during cutting process

Expand
  • Key Laboratory for Surface Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621907, Sichuan, China

Online published: 2025-06-27

Abstract

The temperature and stress fields in beryllium during high speed cutting process were studied by employing a thermo-mechanically coupled finite element method (FEM). The results show that the temperatures in beryllium increase only a little during the cutting process. Both of the residual stresses for along and normal to the cutting direction are tensile stresses in the surface of beryllium after cutting. The cutting force and thrust force are about 280 and -250 kN/m at the steady stage, respectively. The main effects of coolant on the cutting process are to decrease the friction coefficient and heat between the tool and the workpiece, so to reduce the temperature, but almost no effects are made for stress. This study is helpful to enhance the understanding for stress formation and optimize the process parameters of beryllium. © Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2011.

Cite this article

Dong P.; Zhang P.-C.; Li R.-W. . Numerical simulation on temperature and stress fields in beryllium during cutting process[J]. Journal of Shanghai Jiaotong University(Science), 2011 , 16(3) : 329 -332 . DOI: 10.1007/s12204-011-1154-z

Outlines

/