Journal of Shanghai Jiaotong University(Science) >
Fuzzy Dynamic Optimal Model for COVID-19 Epidemic in India Based on Granular Differentiability
Received date: 2022-07-25
Accepted date: 2022-12-23
Online published: 2025-06-06
KHATUA Debnarayan, DE Anupam, KAR Samarjit, SAMANTA Eshan, SEKH Arif Ahmed, GUHA ADHYA Debashree . Fuzzy Dynamic Optimal Model for COVID-19 Epidemic in India Based on Granular Differentiability[J]. Journal of Shanghai Jiaotong University(Science), 2025 , 30(3) : 545 -554 . DOI: 10.1007/s12204-023-2642-7
[1] CONSORTIUM C S M E. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China [J]. Science, 2004, 303(5664): 1666-1669.
[2] CHAN J F W, LAU S K P, TO K K W, et al. Middle east respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease [J]. Clinical Microbiology Reviews, 2015, 28(2): 465-522.
[3] TAO Y, SHI M, CHOMMANARD C, et al. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history [J]. Journal of Virology, 2017, 91(5): e01953-e01916.
[4] CORMAN V M, ECKERLE I, MEMISH Z A, et al. Link of a ubiquitous human coronavirus to dromedary camels [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35): 9864-9869.
[5] TANG X L, WU C C, LI X, et al. On the origin and continuing evolution of SARS-CoV-2 [J]. National Science Review, 2020, 7(6): 1012-1023.
[6] ZHANG T, WU Q F, ZHANG Z G. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak [J]. Current Biology, 2020, 30(7): 1346-1351.e2.
[7] LAM T T Y, JIA N, ZHANG Y W, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins[J]. Nature, 2020, 583(7815): 282-285.
[8] QIN E D, HE X L, TIAN W, et al. A genome sequence of novel SARS-CoV isolates: The genotype, GD-Ins29, leads to a hypothesis of viral transmission in South China [J]. Genomics, Proteomics & Bioinformatics, 2003, 1(2): 101-107.
[9] KAHN J S, MCINTOSH K. History and recent advances in coronavirus discovery [J]. The Pediatric Infectious Disease Journal, 2005, 24(11): S223-S227.
[10] MALIK Y S, SIRCAR S, BHAT S, et al. Emerging novel coronavirus (2019-nCoV)—Current scenario, evolutionary perspective based on genome analysis and recent developments [J]. Veterinary Quarterly, 2020, 40(1): 68-76.
[11] PEIRIS J, LAI S T, POON L, et al. Coronavirus as a possible cause of severe acute respiratory syndrome [J]. The Lancet, 2003, 361(9366): 1319-1325.
[12] PYRC K, DIJKMAN R, DENG L A, et al. Mosaic structure of human coronavirus NL63, one thousand years of evolution [J]. Journal of Molecular Biology, 2006, 364(5): 964-973.
[13] RELUGA T C. Game theory of social distancing in response to an epidemic [J]. PLoS Computational Biology, 2010, 6(5): e1000793.
[14] FANG Y Q, NIE Y T, PENNY M. Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven analysis [J]. Journal of Medical Virology, 2020, 92(6): 645-659.
[15] ANDERSEN K G, RAMBAUT A, LIPKIN W I, et al. The proximal origin of SARS-CoV-2 [J]. Nature Medicine, 2020, 26(4): 450-452.
[16] HOU C, CHEN J, ZHOU Y, et al. The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID‐19): A well‐mixed SEIR model analysis[J]. Journal of Medical Virology, 2020, 92(7): 841-848.
[17] RADULESCU A, WILLIAMS C, CAVANAGH K. Management strategies in a SEIR model of COVID 19 community spread [DB/OL]. (2020-11-27). https://arxiv.org/abs/2003.11150
doi:10.1101/2020.04.01.20049825.
[18] PANDEY G, CHAUDHARY P, GUPTA R, et al. SEIR and Regression Model based COVID-19 outbreak predictions in India [DB/OL]. (2020-04-01). https://arxiv.org/abs/2004.00958
[19] SINHA S, SINHA N. Modelling of COVID–19 infection propagation data in Indian population [DB/OL]. (2020-04-05). https://doi.org/10.31219/osf.io/emf9r
[20] TIWARI A. Modelling and analysis of COVID-19 epidemic in India [J]. Journal of Safety Science and Resilience, 2020, 1(2): 135-140.
[21] NAJARIYAN M, FARAHI M H, ALAVIAN M. Optimal control of hiv infection by using fuzzy dynamical systems [J]. Journal of Mathematics and Computer Science, 2011, 2(4): 639-649.
[22] MAZANDARANI M, NAJARIYAN M. Differentiability of type-2 fuzzy number-valued functions [J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(3): 710-725.
[23] VAN HOA N. Fuzzy fractional functional differential equations under Caputo gH-differentiability [J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1/2/3): 1134-1157.
[24] NGO V H. Fuzzy fractional functional integral and differential equations [J]. Fuzzy Sets and Systems, 2015, 280: 58-90.
[25] LONG H V, SON N T K, HOA N V. Fuzzy fractional partial differential equations in partially ordered metric spaces[J]. Iranian Journal of Fuzzy Systems, 2017, 14(2): 107-126.
[26] LONG H V, SON N T K, TAM H T T. The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability [J]. Fuzzy Sets and Systems, 2017, 309: 35-63.
[27] NAJARIYAN M, FARAHI M H. A new approach for solving a class of fuzzy optimal control systems under generalized Hukuhara differentiability [J]. Journal of the Franklin Institute, 2015, 352(5): 1836-1849.
[28] NAJARIYAN M, FARAHI M H. Optimal control of fuzzy linear controlled system with fuzzy initial conditions[J]. Iranian Journal of Fuzzy Systems, 2013, 10(3): 21-35.
[29] KHATUA D, DE A, MAITY K, et al. Use of “e” and “g” operators to a fuzzy production inventory control model for substitute items [J]. RAIRO - Operations Research, 2019, 53(2): 473-486.
[30] NAJARIYAN M, FARAHI M H. A new approach for the optimal fuzzy linear time invariant controlled system with fuzzy coefficients [J]. Journal of Computational and Applied Mathematics, 2014, 259: 682-694.
[31] KHATUA D, SAMONTO E, MAITY K, et al. A single period fuzzy production inventory control model with exponential time and stock dependent fuzzy demand [M]// Recent advances in intelligent information systems and applied mathematics. Cham: Springer, 2020: 403-413.
[32] MAZANDARANI M, NAJARIYAN M. A note on “a class of linear differential dynamical systems with fuzzy initial condition” [J]. Fuzzy Sets and Systems, 2015, 265: 121-126.
[33] KHATUA D, MAITY K. Stability of fuzzy dynamical systems basedon quasi-level-wise system [J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(6): 3515-3528.
[34] MAZANDARANI M, PARIZ N, KAMYAD A V. Granular differentiability of fuzzy-number-valued functions [J]. IEEE Transactions on Fuzzy Systems, 2018, 26(1): 310-323.
[35] MAZANDARANI M, PARIZ N. Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept [J]. ISA Transactions, 2018, 76: 1-17.
[36] PIEGAT A, LANDOWSKI M. Is the conventional interval-arithmetic correct [J]. Journal of Theoretical and Applied Computer Science, 2012, 6(2): 27-44.
[37] PIEGAT A, LANDOWSKI M. Two interpretations of multidimensional RDM interval arithmetic-multiplication and division[J]. International Journal of Fuzzy Systems, 2013, 15(4): 486-496.
doi:10.1007/978-3-319-11313-5.
[38] LANDOWSKI M. Differences between Moore and RDM interval arithmetic [M]// Intelligent systems'2014. Cham: Springer, 2015: 331-340.
[39] LANDOWSKI M. Comparison of RDM complex interval arithmetic and rectangular complex arithmetic [M]// Hard and soft computing for artificial intelligence, multimedia and security. Cham: Springer, 2017: 49-57.
[40] TOMASZEWSKA K, PIEGAT A. Application of the horizontal membership function to the uncertain displacement calculation of a composite massless rod under a tensile load [M]// Soft computing in computer and information science. Cham: Springer, 2015: 63-72.
[41] PIEGAT A, LANDOWSKI M. Horizontal membership function and examples of its applications [J]. International Journal of Fuzzy Systems, 2015, 17(1): 22-30.
[42] PIEGAT A, LANDOWSKI M. Is fuzzy number the right result of arithmetic operations on fuzzy numbers? [M]//Advances in fuzzy logic and technology 2017. Cham: Springer, 2017: 181-194.
[43] LANDOWSKI M. Usage of RDM interval arithmetic for solving cubic interval equation [M]//Advances in fuzzy logic and technology 2017. Cham: Springer, 2017: 382-391.
[44] NAJARIYAN M, ZHAO Y. Fuzzy fractional quadratic regulator problem under granular fuzzy fractional derivatives [J]. IEEE Transactions on Fuzzy Systems, 2018, 26(4): 2273-2288.
[45] SON N T K, LONG H V, DONG N P. Fuzzy delay differential equations under granular differentiability with applications [J]. Computational and Applied Mathematics, 2019, 38(3): 1-29.
[46] BEDE B. Mathematics of fuzzy sets and fuzzy logic [M]. Berlin, Heidelberg: Springer, 2013.
[47] DONG N P, LONG H V, KHASTAN A. Optimal control of a fractional order model for granular SEIR epidemic with uncertainty [J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 88: 105312.
[48] MAZANDARANI M, ZHAO Y. Fuzzy Bang-Bang control problem under granular differentiability [J]. Journal of the Franklin Institute, 2018, 355(12): 4931-4951.
[49] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission [J]. Mathematical Biosciences, 2002, 180: 29-48.
[50] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London. Series A, 1927, 115(772): 700-721.
[51] ZHANG J P, JIN Z. The analysis of epidemic network model with infectious force in latent and infected period [J]. Discrete Dynamics in Nature and Society, 2010, 2010: 1-12.
[52] JANA S, HALDAR P, KAR T K. Mathematical analysis of an epidemic model with isolation and optimal controls [J]. International Journal of Computer Mathematics, 2017, 94(7): 1318-1336.
[53] RODRIGUES H S, MONTEIRO M T T, TORRES D F M. Vaccination models and optimal control strategies to dengue [J]. Mathematical Biosciences, 2014, 247: 1-12.
[54] RODRIGUES P, SILVA C J, TORRES D F M. Cost-effectiveness analysis of optimal control measures for tuberculosis [J]. Bulletin of Mathematical Biology, 2014, 76(10): 2627-2645.
[55] RACHAH A, TORRES D F M. Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in West Africa [J]. Discrete Dynamics in Nature and Society, 2015, 2015: 1-9.
[56] GRIGORIEVA E V, KHAILOV E N, KOROBEINIKOV A. Optimal control for a SIR epidemic model with nonlinear incidence rate [J]. Mathematical Modelling of Natural Phenomena, 2016, 11(4): 89-104.
[57] KAR T K, JANA S. A theoretical study on mathematical modelling of an infectious disease with application of optimal control [J]. Biosystems, 2013, 111(1): 37-50.
[58] PONTRYAGIN L S. Mathematical theory of optimal processes [M]. Boca Raton: CRC Press, 1987.
[59] CASTILLO O, CASTRO J R, PULIDO M, et al. Interval type-3 fuzzy aggregators for ensembles of neural networks in COVID-19 time series prediction [J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105110.
[60] CASTILLO O, MELIN P. A new fuzzy fractal control approach of non-linear dynamic systems: The case of controlling the COVID-19 pandemics [J]. Chaos, Solitons & Fractals, 2021, 151: 111250.
[61] World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 72 [EB/OL]. (2020-04-01). https://apps.who.int/iris/bitstream/handle/10665/331685/nCoVsitrep01Apr2020-eng.pdf2020
[62] COVID19INDIA [EB/OL]. [2022-07-25]. https://www.covid19india.org/
/
〈 |
|
〉 |