Journal of Shanghai Jiaotong University(Science) >
Deep Learning Framework for Predicting Essential Proteins with Temporal Convolutional Networks
Received date: 2022-05-06
Accepted date: 2022-09-06
Online published: 2025-06-06
Lu Pengli, Yang Peishi, Liao Yonggang . Deep Learning Framework for Predicting Essential Proteins with Temporal Convolutional Networks[J]. Journal of Shanghai Jiaotong University(Science), 2025 , 30(3) : 510 -520 . DOI: 10.1007/s12204-023-2632-9
[1] CLATWORTHY A E, PIERSON E, HUNG D T. Targeting virulence: A new paradigm for antimicrobial therapy [J]. Nature Chemical Biology, 2007, 3(9): 541- 548.
[2] GIAEVER G, CHU A M, NI L, et al. Functional profiling of the saccharomyces cerevisiae genome [J]. Nature, 2002, 418(6896): 387-391.
[3] CULLEN L M, ARNDT G M. Genome-wide screening for gene function using RNAi in mammalian cells [J]. Immunology and Cell Biology, 2005, 83(3): 217-223.
[4] ROEMER T, JIANG B, DAVISON J, et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery [J]. Molecular Microbiology, 2003, 50(1): 167-181.
[5] FREEMAN L C. Centrality in social networks conceptual clarification [J]. Social Networks, 1978, 1(3): 215-239.
[6] JOY M P, BROCK A, INGBER D E, et al. Highbetweenness proteins in the yeast protein interaction network [J]. Journal of Biomedicine and Biotechnology, 2005, 2005(2): 96-103.
[7] WUCHTY S, STADLER P F. Centers of complex networks [J]. Journal of Theoretical Biology, 2003, 223(1): 45-53.
[8] ESTRADA E, RODR´IGUEZ-VEL´AZQUEZ J A. Subgraph centrality in complex networks [J]. Physical Review E, 2005, 71(5): 056103.
[9] WANG J X, LI M, WANG H, et al. Identification of essential proteins based on edge clustering coefficient [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(4): 1070-1080.
[10] LI M, WANG J X, CHEN X, et al. A local average connectivity-based method for identifying essential proteins from the network level [J]. Computational Biology and Chemistry, 2011, 35(3): 143-150.
[11] ZHANG C L, ZHANG S W. A supervised orthogonal discriminant projection for tumor classification using gene expression data [J]. Computers in Biology and Medicine, 2013, 43(5): 568-575.
[12] WANG J S, WANG N, GE F, et al. Gene expression data classification using Laplacian eigenmap based on improved maximum margin criterion [J]. Chinese Journal of Electronics, 2013, 22(3): 521-524.
[13] TANG X W, WANG J X, ZHONG J C, et al. Predicting essential proteins based on weighted degree centrality [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(2): 407- 418.
[14] YUGANDHAR K, GROMIHA M M. Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches [J]. Proteins: Structure, Function, and Bioinformatics, 2014, 82(9): 2088-2096.
[15] LUO J W, QI Y. Identification of essential proteins based on a new combination of local interaction density and protein complexes [J]. PLoS One, 2015, 10(6): e0131418.
[16] LI M, LU Y, NIU Z B, et al. United complex centrality for identification of essential proteins from PPI networks [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(2): 370-380.
[17] LI M, ZHANG H H,WANG J X, et al. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data [J]. BMC Systems Biology, 2012, 6(1): 1-9.
[18] XIAO Q H, WANG J X, PENG X Q, et al. Identifying essential proteins from active PPI networks constructed with dynamic gene expression [J]. BMC Genomics, 2015, 16(Suppl 3): S1.
[19] HWANG Y C, LIN C C, CHANG J Y, et al. Predicting essential genes based on network and sequence analysis [J]. Molecular BioSystems, 2009, 5(12): 1672-1678.
[20] ACENCIO M L, LEMKE N. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information [J]. BMC Bioinformatics, 2009, 10(1): 1-18.
[21] ZENG M, LI M, WU F X, et al. DeepEP: A deep learning framework for identifying essential proteins [J]. BMC Bioinformatics, 2019, 20(Suppl 16): 506.
[22] ZHANG X E, XIAOW X, XIAOW J. DeepHE: Accurately predicting human essential genes based on deep learning [J]. PLoS Computational Biology, 2020, 16(9): e1008229.
[23] GROVER A, LESKOVEC J. Node2vec: Scalable feature learning for networks [C]//22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 855-864.
[24] BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [DB/OL]. (2018-03-04). https://arxiv.org/abs/1803.01271
[25] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines Vinod Nair [C]//27th International Conference on Machine Learning. Haifa: ICML, 2010: 807-814.
[26] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]//32nd International Conference on International Conference on Machine Learning. New York: ACM, 2015: 448-456.
[27] ZAHIDI Y, EL YOUNOUSSI Y, AZROUMAHLI C. Comparative study of the most useful Arabicsupporting natural language processing and deep learning libraries [C]//2019 5th International Conference on Optimization and Applications. Kenitra: IEEE, 2019: 1-10.
[28] BUNDY A, WALLEN L. Breadth-first search [M]//Catalogue of artificial intelligence tools. Berlin, Heidelberg: Springer, 1984: 13.
[29] TARJAN R. Depth-first search and linear graph algorithms [J]. SIAM Journal on Computing, 1972, 1(2): 146-160.
[30] CHATR-ARYAMONTRI A, OUGHTRED R, BOUCHER L, et al. The BioGRID interaction database: 2017 update [J]. Nucleic Acids Research, 2017, 45(D1): D369-D379.
[31] MEWES H W, FRISHMAN D, G¨ULDENR U, et al. MIPS: a database for genomes and protein sequences [J]. Nucleic Acids Research, 2002, 30(1): 31-34.
[32] CHERRY J M, ADLER C, BALL C, et al. SGD: Saccharomyces genome database [J]. Nucleic Acids Research, 1998, 26(1): 73-79.
[33] ZHANG R, LIN Y. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes [J]. Nucleic Acids Research, 2009, 37(suppl 1): D455-D458.
[34] WINZELER E A, SHOEMAKER D D, ASTROMOFF A, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis [J]. Science, 1999, 285(5429): 901-906.
[35] TU B P, KUDLICKI A, ROWICKA M, et al. Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes [J]. Science, 2005, 310(5751): 1152-1158.
[36] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in python [DB/OL]. (2012-01-02). https://arxiv.org/ abs/1201.0490
[37] ZENG M, LI M, FEI Z H, et al. A deep learning framework for identifying essential proteins by integrating multiple types of biological information [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(1): 296-305.
/
〈 |
|
〉 |