Journal of Shanghai Jiaotong University(Science) >
Fast Parallel Magnetic Resonance Imaging Reconstruction Based on Sparsifying Transform Learning and Structured Low-Rank Model
Received date: 2022-08-10
Accepted date: 2022-12-24
Online published: 2025-06-06
Duan Jizhong, Xu Yuhán, Huang Huan . Fast Parallel Magnetic Resonance Imaging Reconstruction Based on Sparsifying Transform Learning and Structured Low-Rank Model[J]. Journal of Shanghai Jiaotong University(Science), 2025 , 30(3) : 499 -509 . DOI: 10.1007/s12204-023-2647-2
[1] DONOHO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289- 1306.
[2] PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: Sensitivity encoding for fast MRI [J]. Magnetic Resonance in Medicine, 1999, 42(5): 952-962.
[3] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[4] LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.
[5] YANG J F, ZHANG Y, YIN W T. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288-297.
[6] RAVISHANKAR S, BRESLER Y. MR image reconstruction from highly undersampled k-space data by dictionary learning [J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041.
[7] RAVISHANKAR S, BRESLER Y. Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to MRI [J]. SIAM Journal on Imaging Sciences, 2015, 8(4): 2519-2557.
[8] WEN B H, LI Y J, BRESLER Y. Image recovery via transform learning and low-rank modeling: The power of complementary regularizers [J]. IEEE Transactions on Image Processing, 2020, 29: 5310-5323.
[9] WEN B H, RAVISHANKAR S, PFISTER L, et al. Transform learning for magnetic resonance image reconstruction: From model-based learning to building neural networks [J]. IEEE Signal Processing Magazine, 2020, 37(1): 41-53.
[10] GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA) [J]. Magnetic Resonance in Medicine, 2002, 47(6): 1202-1210.
[11] LUSTIG M, PAULY J M. SPIRiT: Iterative selfconsistent parallel imaging reconstruction from arbitrary k-space [J]. Magnetic Resonance in Medicine, 2010, 64(2): 457-471.
[12] SHIN P J, LARSON P E Z, OHLIGER M A, et al. Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion [J]. Magnetic Resonance in Medicine, 2014, 72(4): 959-970.
[13] HALDAR J P, ZHUO J W. P-LORAKS: Low-rank modeling of local k-space neighborhoods with parallel imaging data [J]. Magnetic Resonance in Medicine, 2016, 75(4): 1499-1514.
[14] KIM T H, HALDAR J P. LORAKS software version 2.0: Faster implementation and enhanced capabilities [R]. Los Angeles: University of Southern California, 2018.
[15] HALDAR J P. Autocalibrated loraks for fast constrained MRI reconstruction [C]//2015 IEEE 12th International Symposium on Biomedical Imaging. Brooklyn: IEEE, 2015: 910-913.
[16] LIU Y L, YI Z Y, ZHAO Y J, et al. Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion [J]. Magnetic Resonance in Medicine, 2021, 85(2): 897-911.
[17] DUAN J Z, LIU C, LIU Y, et al. Adaptive transform learning and joint sparsity based PLORAKS parallel magnetic resonance image reconstruction [J]. IEEE Access, 2020, 8: 212315-212326.
[18] CHANG C H, YU X D, JI J X. Compressed sensing MRI reconstruction from 3D multichannel data using GPUs [J]. Magnetic Resonance in Medicine, 2017, 78(6): 2265-2274.
[19] ULLAH I, NISAR H, RAZA H, et al. QRdecomposition based SENSE reconstruction using parallel architecture [J]. Computers in Biology and Medicine, 2018, 95: 1-12.
[20] MURPHY M, ALLEY M, DEMMEL J, et al. Fast 1-SPIRiT compressed sensing parallel imaging MRI: Scalable parallel implementation and clinically feasible runtime [J]. IEEE Transactions on Medical Imaging, 2012, 31(6): 1250-1262.
[21] KIM D, FESSLER J A. On the convergence analysis of the optimized gradient method [J]. Journal of Optimization Theory and Applications, 2017, 172(1): 187-205.
[22] GOLDSTEIN T, O’DONOGHUE B, SETZER S, et al. Fast alternating direction optimization methods [J]. SIAM Journal on Imaging Sciences, 2014, 7(3): 1588- 1623.
[23] FESSLER J A. Optimization methods for magnetic resonance image reconstruction: Key models and optimization algorithms [J]. IEEE Signal Processing Magazine, 2020, 37(1): 33-40.
/
〈 |
|
〉 |