Medicine-Engineering Interdisciplinary

Improvement of Prior Image for Metal Artifact Reduction of Computed Tomography

Expand
  • 1. School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China; 2. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 3. School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China

Received date: 2022-09-03

  Accepted date: 2022-12-24

  Online published: 2025-06-06

Abstract

It is not easy to reduce the metal artifacts of computed tomography images. However, the pixel values inside the metal artifact regions vary smoothly, while those on the borders of the metal and the bone regions vary sharply. When the Canny operation by adaptive thresholding is conducted on the raw image, the almost continuous edges can be formed obviously on the borders of the metal and the bone regions, but this kind of information cannot be formed for the metal artifact regions. In this paper, by searching the closed areas formed by the border edges of the bone regions in the Canny image, the metal artifact regions, which are very difficult to discriminate only by intensity thresholding, can be excluded effectively. A novel prior image-based method is thus developed for metal artifact reduction. The experiments demonstrate that the proposed method can be realized easily and reduce the metal artifacts effectively even if multiple large metal objects exist simultaneously in the image. The method is suitable for the clinical application.

Cite this article

Sun Wenwu, Zhuang Tiange, Chen Siping . Improvement of Prior Image for Metal Artifact Reduction of Computed Tomography[J]. Journal of Shanghai Jiaotong University(Science), 2025 , 30(3) : 446 -454 . DOI: 10.1007/s12204-023-2643-6

References

[1] HSIEH J. Preliminaries [M]//Computed tomography: Principles, design, artifacts, and recent advances.  Bellingham: SPIE Press, 2015.  

[2] KARIMI S, COSMAN P, WALD C, et al.  Segmentation  of artifacts and anatomy in CT metal artifact reduction [J].  Medical Physics, 2012, 39(10): 5857-5868.  

[3] WATZKE O, KALENDER W A. A pragmatic approach  to metal artifact reduction in CT: Merging of  metal artifact reduced images [J].  European Radiology, 2004, 14(5): 849-856.  

[4] GLOVER G H, PELC N J. An algorithm for the reduction  of metal clip artifacts in CT reconstructions [J].  Medical Physics, 1981, 8(6): 799-807.  

[5] KALENDER W A, HEBEL R, EBERSBERGER J. Reduction of CT artifacts caused by metallic implants [J].  Radiology, 1987, 164(2): 576-577.  

[6] ABDOLI M, AY M R, AHMADIAN A, et al.  Reduction  of dental filling metallic artifacts in CT-based attenuation  correction of PET data using weighted virtual  sinograms optimized by a genetic algorithm [J].  Medical Physics, 2010, 37(12): 6166-6177.  

[7] BAZALOVA M, BEAULIEU L, PALEFSKY S, et al.  Correction of CT artifacts and its influence on Monte Carlo dose calculations [J].  Medical Physics, 2007, 34(6Part1): 2119-2132.  

[8] BAL M, SPIES L. Metal artifact reduction in CT using  tissue-class modeling and adaptive prefiltering [J].  Medical Physics, 2006, 33(8): 2852-2859.  

[9] MEYER E, RAUPACH R, LELL M, et al.  Normalized  metal artifact reduction (NMAR) in computed tomography [J].  Medical Physics, 2010, 37(10): 5482-5493.  

[10] PARK H S, CHOI J K, PARK K R, et al.  Metal artifact  reduction in CT by identifying missing data hidden in  metals [J].  Journal of X-Ray Science and Technology, 2013, 21(3): 357-372.  

[11] MEHRANIAN A, AY M R, RAHMIM A, et al.  X-ray CT metal artifact reduction using wavelet domain L0  sparse regularization [J].  IEEE Transactions on Medical Imaging, 2013, 32(9): 1707-1722.  

[12] DE MAN B, NUYTS J, DUPONT P, et al.  An iterative  maximum-likelihood polychromatic algorithm for CT [J].  IEEE Transactions on Medical Imaging, 2001, 20(10): 999-1008.  

[13] ELBAKRI I A, FESSLER J A. Statistical image reconstruction  for polyenergetic X-ray computed tomography [J].  IEEE Transactions on Medical Imaging, 2002, 21(2): 89-99.

[14] MENVIELLE N, GOUSSARD Y, ORBAN D, et al.  Reduction of beam-hardening artifacts in X-ray CT [C]//2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.  Shanghai: IEEE, 2006: 1865- 1868.

[15] O’SULLIVAN J A, BENAC J. Alternating minimization  algorithms for transmission tomography [J].  IEEE Transactions on Medical Imaging, 2007, 26(3): 283- 297.

[16] WILLIAMSON J F, WHITING B R, BENAC J, et  al.  Prospects for quantitative computed tomography  imaging in the presence of foreign metal bodies using  statistical image reconstruction [J].  Medical Physics, 2002, 29(10): 2404-2418.

[17] GJESTEBY L, YANG Q S, XI Y, et al.  Deep learning  methods to guide CT image reconstruction and reduce metal artifacts [C]//Medical Imaging 2017: Physics of Medical Imaging, SPIE Proceedings.  Orlando: SPIE, 2017: 101322W.

[18] GJESTEBY L, YANG Q S, XI Y, et al.  Reducing  metal streak artifacts in CT images via deep learning: Pilot results [C]//The 14th International Meeting  on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine.  Xi’an: IEEE, 2017: 611-614.

[19] GJESTEBY L, YANG Q S, XI Y, et al.  Deep learning  methods for CT image-domain metal artifact reduction [C]//Developments in X-Ray Tomography XI.  San Diego: SPIE, 2017: 103910W.

[20] ZHANG Y B, YU H Y. Convolutional neural network  based metal artifact reduction in X-ray computed tomography [J].  IEEE Transactions on Medical Imaging, 2018, 37(6): 1370-1381.

[21] PARK H S, LEE S M, KIM H P, et al.  Machinelearning-  based nonlinear decomposition of CT images  for metal artifact reduction [DB/OL].  (2017-08-01) [2022-09-03].  https://arxiv.org/abs/1708.00244

[22] MOUTON A, MEGHERBI N, FLITTON G T, et al.  A novel intensity limiting approach to Metal Artefact Reduction in 3D CT baggage imagery [C]//2012 19th IEEE International Conference on Image Processing. Orlando: IEEE, 2012: 2057-2060.

[23] JEONG K Y, RA J B. Reduction of artifacts due  to multiple metallic objects in computed tomography [C]//SPIE Proceeding, Medical Imaging 2009: Physics  of Medical Imaging. Lake Buena Vista: SPIE, 2009: 72583E.

[24] JACOBS F, SUNDERMANN E, DE SUTTER B, et  al. A fast algorithm to calculate the exact radiological  path through a pixel or voxel space [J]. Journal of Computing and Information Technology, 1998, 6(1): 89-94.

[25] LI Y S, BAO X D, YIN X D, et al. Metal artifact  reduction in CT based on adaptive steering filter and  nonlocal sinogram inpainting [C]//2010 3rd International Conference on Biomedical Engineering and Informatics. Yantai: IEEE, 2010: 380-383.

[26] KLOTZ E, KALENDER W A, SOKIRANSKY R, et  al. Algorithms for the reduction of CT artifacts caused  by metallic implants [C]//Medical imaging IV : PACS  systems design and evaluation. Newport Beach: SPIE, 1990: 642-650.

[27] M¨ULLER J, BUZUG T M. Spurious structures created  by interpolation-based CT metal artifact reduction [C]//SPIE Proceedings, Medical Imaging 2009: Physics of Medical Imaging. Lake Buena Vista. SPIE, 2009: 72581Y.

[28] MEYER E, RAUPACH R, SCHMIDT B, et al. Adaptive  normalized metal artifact reduction (ANMAR) in  computed tomography [C]//2011 IEEE Nuclear Science Symposium Conference Record. Valencia: IEEE, 2011: 2560-2565.

[29] PRELL D, KYRIAKOU Y, BEISTER M, et al. A  novel forward projection-based metal artifact reduction  method for flat-detector computed tomography [J]. Physics in Medicine and Biology, 2009, 54(21): 6575-6591.

[30] WANG J, WANG S J, CHEN Y, et al. Metal artifact  reduction in CT using fusion based prior image [J]. Medical Physics, 2013, 40(8): 081903.

[31] ZHANG Y B, MOU X Q. Metal artifact reduction  based on the combined prior image [DB/OL]. (2014- 08-22) [2022-09-03]. https://arxiv.org/abs/1408.5198

 


Outlines

/