[1] GLYN-JONES S, PALMER A J R, AGRICOLA R,et al. Osteoarthritis [J]. The Lancet, 2015, 386(9991):376-387.
[2] JIN X Z, JONES G, CICUTTINI F, et al. Effect ofvitamin D supplementation on tibial cartilage volumeand knee pain among patients with symptomatic kneeosteoarthritis: A randomized clinical trial [J]. JAMA,2016, 315(10): 1005-1013.
[3] ARMIENTO A R, STODDART M J, ALINI M, et al.Biomaterials for articular cartilage tissue engineering:Learning from biology [J]. Acta Biomaterialia, 2018,65: 1-20.
[4] LUO Y Y, SINKEVICIUTE D, HE Y, et al. The minor collagens in articular cartilage [J]. Protein & Cell,2017, 8(8): 560-572.
[5] GUILAK F, NIMS R J, DICKS A, et al. Osteoarthritis as a disease of the cartilage pericellular matrix [J].Matrix Biology, 2018, 71/72: 40-50.
[6] KüHN K, D’LIMA D D, HASHIMOTO S, et al. Celldeath in cartilage [J]. Osteoarthritis and Cartilage,2004, 12(1): 1-16.
[7] KWON H, BROWN W E, LEE C A, et al. Surgicaland tissue engineering strategies for articular cartilageand meniscus repair [J]. Nature Reviews Rheumatology, 2019, 15(9): 550-570.
[8] CUCCHIARINI M, MADRY H. Biomaterial-guideddelivery of gene vectors for targeted articular cartilagerepair [J]. Nature Reviews Rheumatology, 2019, 15(1):18-29.
[9] TEMENOFF J S, MIKOS A G. Review: Tissue engineering for regeneration of articular cartilage [J]. Biomaterials, 2000, 21(5): 431-440.
[10] ORYAN A, SAHVIEH S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing [J]. International Journal of Biological Macromolecules, 2017,104: 1003-1011.
[11] GUO T, NOSHIN M, BAKER H B, et al. 3D printedbiofunctionalized scaffolds for microfracture repair ofcartilage defects [J]. Biomaterials, 2018, 185: 219-231.
[12] MAKRIS E A, GOMOLL A H, MALIZOS K N, etal. Repair and tissue engineering techniques for articular cartilage [J]. Nature Reviews Rheumatology, 2015,11(1): 21-34.
[13] GUO T, FERLIN K M, KAPLAN D S, et al.Engineering niches for cartilage tissue regeneration[M]//Biology and engineering of stem cell niches.Boston: Academic Press, 2017.
[14] NIE X L, CHUAH Y J, ZHU W Z, et al. Decellularizedtissue engineered hyaline cartilage graft for articularcartilage repair [J]. Biomaterials, 2020, 235: 119821.
[15] RINGE J, BURMESTER G R, SITTINGER M. Regenerative medicine in rheumatic disease: Progress intissue engineering [J]. Nature Reviews Rheumatology,2012, 8(8): 493-498.
[16] HUANG B J, HU J C, ATHANASIOU K A. Cell-basedtissue engineering strategies used in the clinical repairof articular cartilage [J]. Biomaterials, 2016, 98: 1-22.
[17] JIANG Y Z, TUAN R S. Origin and function of cartilage stem/progenitor cells in osteoarthritis [J]. NatureReviews Rheumatology, 2015, 11(4): 206-212.
[18] GRACEFFA V, VINATIER C, GUICHEUX J, et al.Chasing chimeras: The elusive stable chondrogenicphenotype [J]. Biomaterials, 2019, 192: 199-225.
[19] LEE H P, GU L, MOONEY D J, et al. Mechanical confinement regulates cartilage matrix formationby chondrocytes [J]. Nature Materials, 2017, 16(12):1243-1251.
[20] WANG Y, CHEN Y, XU Y, et al. Effects of the bonding intensity between hyaluronan and gelatin on chondrogenic phenotypic maintenance [J]. Journal of Materials Chemistry B, 2020, 8: 9062-9074.
[21] VáZQUEZ-GONZáLEZ M, WILLNER I. Stimuliresponsive biomolecule-based hydrogels and their applications [J]. Angewandte Chemie International Edition, 2020, 59(36): 15342-15377.
[22] GAO J, ZHAN J, YANG Z M. Enzyme-instructed selfassembly (EISA) and hydrogelation of peptides [J]. Advanced Materials, 2020, 32(3): 1805798.
[23] DING X, ZHAO H M, LI Y Z, et al. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering [J].Advanced Drug Delivery Reviews, 2020, 160: 78-104.
[24] FRENCH K M, SOMASUNTHARAM I, DAVIS M E.Self-assembling peptide-based delivery of therapeuticsfor myocardial infarction [J]. Advanced Drug DeliveryReviews, 2016, 96: 40-53.
[25] REN K X, HE C L, XIAO C S, et al. Injectable glycopolypeptide hydrogels as biomimetic scaffolds forcartilage tissue engineering [J]. Biomaterials, 2015, 51:238-249.
[26] FU K, WU H G, SU Z Q. Self-assembling peptidebased hydrogels: Fabrication, properties, and applications [J]. Biotechnology Advances, 2021, 49: 107752.
[27] CALIARI S R, BURDICK J A. A practical guide tohydrogels for cell culture [J]. Nature Methods, 2016,13(5): 405-414.
[28] CAI L L, LIU S, GUO J W, et al. Polypeptide-basedself-healing hydrogels: Design and biomedical applications [J]. Acta Biomaterialia, 2020, 113: 84-100.
[29] SONG Z Y, HAN Z Y, LV S X, et al. Syntheticpolypeptides: From polymer design to supramolecular assembly and biomedical application [J]. ChemicalSociety Reviews, 2017, 46(21): 6570-6599.
[30] LU Z H, LIU S J, LE Y G, et al. An injectable collagengenipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis [J]. Biomaterials, 2019, 218: 119190.
[31] MREDHA M T I, KITAMURA N, NONOYAMA T,et al. Anisotropic tough double network hydrogel fromfish collagen and its spontaneous in vivo bonding tobone [J]. Biomaterials, 2017, 132: 85-95.
[32] SHI W L, SUN M Y, HU X Q, et al. Structurally andfunctionally optimized silk-fibroin–gelatin scaffold using 3D printing to repair cartilage injury in vitro and invivo [J]. Advanced Materials, 2017, 29(29): 1701089.
[33] AISENBREY E A, BRYANT S J. The role of chondroitin sulfate in regulating hypertrophy during MSCchondrogenesis in a cartilage mimetic hydrogel underdynamic loading [J]. Biomaterials, 2019, 190/191: 51-62.
[34] PARMAR P A, CHOW L W, ST-PIERRE J P, etal. Collagen-mimetic peptide-modifiable hydrogels forarticular cartilage regeneration [J]. Biomaterials, 2015,54: 213-225.
[35] CHEN Z Y, ZHANG Q, LI H M, et al. Elastinlike polypeptide modified silk fibroin porous scaffoldpromotes osteochondral repair [J]. Bioactive Materials, 2021, 6(3): 589-601.
[36] HONG H, SEO Y B, KIM D Y, et al. Digital lightprocessing 3D printed silk fibroin hydrogel for cartilage tissue engineering [J]. Biomaterials, 2020, 232:119679.
[37] QI C, LIU J, JIN Y, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage[J]. Biomaterials, 2018, 163: 89-104.
[38] LIU H, CHENG Y L, CHEN J J, et al. Componenteffect of stem cell-loaded thermosensitive polypeptidehydrogels on cartilage repair [J]. Acta Biomaterialia,2018, 73: 103-111.
[39] LEE S S, CHOI G E, LEE H J, et al. Layered doublehydroxide and polypeptide thermogel nanocompositesystem for chondrogenic differentiation of stem cells[J]. ACS Applied Materials & Interfaces, 2017, 9(49):42668-42675.
[40] KIM S H, LEE H R, YU S J, et al. Hydrogel-laden paper scaffold system for origami-based tissue engineering [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50):15426-15431.
[41] LAM J, CLARK E C, FONG E L S, et al. Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(l-Lysine) for applications in cartilage tissueengineering [J]. Biomaterials, 2016, 83: 332-346.
[42] LIN C, CROWLEY S T, UCHIDA S, et al. Treatmentof intervertebral disk disease by the administration ofmRNA encoding a cartilage-anabolic transcription factor [J]. Molecular Therapy: Nucleic Acids, 2019, 16:162-171.
[43] LI R, XU J B, WONG D S H, et al. Self-assembled Ncadherin mimetic peptide hydrogels promote the chondrogenesis of mesenchymal stem cells through inhibition of canonical Wnt/β-catenin signaling [J]. Biomaterials, 2017, 145: 33-43.
[44] KIM S J, KIM J E, KIM S H, et al. Therapeutic effects of neuropeptide substance P coupled with selfassembled peptide nanofibers on the progression of osteoarthritis in a rat model [J]. Biomaterials, 2016, 74:119-130.
[45] LU J J, SHEN X Z, SUN X, et al. Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bonemarrow homing peptide for cartilage regeneration [J].Theranostics, 2018, 8(18): 5039-5058.
[46] ALMEIDA H V, ESWARAMOORTHY R,CUNNIFFE G M, et al. Fibrin hydrogels functionalized with cartilage extracellular matrix andincorporating freshly isolated stromal cells as aninjectable for cartilage regeneration [J]. Acta Biomaterialia, 2016, 36: 55-62.
[47] USTUN YAYLACI S, SARDAN EKIZ M, ARSLANE, et al. Supramolecular GAG-like self-assembled glycopeptide nanofibers induce chondrogenesis and cartilage regeneration [J]. Biomacromolecules, 2016, 17(2):679-689.
[48] VEGA S L, KWON M Y, SONG K H, et al. Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments [J]. Nature Communications, 2018, 9: 614.
[49] ARMIENTO A R, ALINI M, STODDART M J. Articular fibrocartilage - Why does hyaline cartilage failto repair? [J]. Advanced Drug Delivery Reviews, 2019,146: 289-305.
[50] GU L S, SHAN T T, MA Y X, et al. Novel biomedical applications of crosslinked collagen [J]. Trends inBiotechnology, 2019, 37(5): 464-491.
[51] SORUSHANOVA A, DELGADO L M, WU Z N, et al.The collagen suprafamily: From biosynthesis to advanced biomaterial development [J]. Advanced Materials, 2019, 31(1): 1801651.
[52] KLOTZ B J, GAWLITTA D, ROSENBERG A JW P, et al. Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair [J]. Trends inBiotechnology, 2016, 34(5): 394-407.
[53] ALTUNBAS A, POCHAN D J. Peptide-based andpolypeptide-based hydrogels for drug delivery and tissue engineering [J]. Topics in Current Chemistry, 2012,310: 135-167.
[54] DALY A C, CRITCHLEY S E, RENCSOK E M, et al.A comparison of different bioinks for 3D bioprinting offibrocartilage and hyaline cartilage [J]. Biofabrication,2016, 8(4): 045002.
[55] HAN L, XU J L, LU X, et al. Biohybrid methacrylatedgelatin/polyacrylamide hydrogels for cartilage repair[J]. Journal of Materials Chemistry B, 2017, 5(4): 731-741.
[56] HAN L, WANG M H, LI P F, et al. Mussel-inspiredtissue-adhesive hydrogel based on the polydopamine–chondroitin sulfate complex for growth-factor-free cartilage regeneration [J]. ACS Applied Materials & Interfaces, 2018, 10(33): 28015-28026.
[57] GAN D L, XU T, XING W S, et al. Mussel-inspireddopamine oligomer intercalated tough and resilientgelatin methacryloyl (GelMA) hydrogels for cartilageregeneration [J]. Journal of Materials Chemistry B,2019, 7(10): 1716-1725.
[58] PARMAR P A, ST-PIERRE J P, CHOW L W, etal. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transientlyRGDS-functionalized collagen-mimetic hydrogels [J].Acta Biomaterialia, 2017, 51: 75-88.
[59] PARMAR P A, SKAALURE S C, CHOW L W, etal. Temporally degradable collagen–mimetic hydrogelstuned to chondrogenesis of human mesenchymal stemcells [J]. Biomaterials, 2016, 99: 56-71.
[60] PENG Y Y, YOSHIZUMI A, DANON S J, et al. AStreptococcus pyogenes derived collagen-like proteinas a non-cytotoxic and non-immunogenic cross-linkablebiomaterial [J]. Biomaterials, 2010, 31(10): 2755-2761.
[61] GHOLIPOURMALEKABADI M, SAPRU S,SAMADIKUCHAKSARAEI A, et al. Silk fibroinfor skin injury repair: Where do things stand? [J].Advanced Drug Delivery Reviews, 2020, 153: 28-53.
[62] CHENG G, DAVOUDI Z, XING X, et al. Advancedsilk fibroin biomaterials for cartilage regeneration [J].ACS Biomaterials Science & Engineering, 2018, 4(8):2704-2715.
[63] DU S, ZHANG J, ZHOU W T, et al. Interactionsbetween fibroin and sericin proteins from Antheraeapernyi and Bombyx mori silk fibers [J]. Journal of Colloid and Interface Science, 2016, 478: 316-323.
[64] KIM S H, YEON Y K, LEE J M, et al. Precisely printable and biocompatible silk fibroin bioink for digitallight processing 3D printing [J]. Nature Communications, 2018, 9: 1620.
[65] BASU A, KUNDURU K R, KATZHENDLER J, et al.Poly(α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid [J]. AdvancedDrug Delivery Reviews, 2016, 107: 82-96.
[66] GELAIN F, SILVA D, CAPRINI A, et al. BMHP1-derived self-assembling peptides: Hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications [J]. ACS Nano,2011, 5(3): 1845-1859.
[67] ZAMUNER A, CAVO M, SCAGLIONE S, et al. Design of decorated self-assembling peptide hydrogels asarchitecture for mesenchymal stem cells [J]. Materials,2016, 9(9): 727.
[68] CAO F Y, YIN W N, FAN J X, et al. A novel functionof BMHP1 and cBMHP1 peptides to induce the osteogenic differentiation of mesenchymal stem cells [J].Biomaterials Science, 2015, 3(2): 345-351.
[69] BOGUNOVIC L, WETTERS N G, JAIN A, et al. Invitro analysis of micronized cartilage stability in theknee: Effect of fibrin level, defect size, and defect location [J]. Arthroscopy: the Journal of Arthroscopic &Related Surgery, 2019, 35(4): 1212-1218.
[70] PENG Z, SUN H, BUNPETCH V, et al. The regulation of cartilage extracellular matrix homeostasis injoint cartilage degeneration and regeneration [J]. Biomaterials, 2021, 268: 120555.
[71] KIM J S, KIM T H, KANG D L, et al. Chondrogenicdifferentiation of human ASCs by stiffness control in3D fibrin hydrogel [J]. Biochemical and Biophysical Research Communications, 2020, 522(1): 213-219.
[72] DE MELO B A G, JODAT Y A, MEHROTRA S, etal. 3D printed cartilage-like tissue constructs with spatially controlled mechanical properties [J]. AdvancedFunctional Materials, 2019, 29(51): 1906330.
[73] KARGARPOUR Z, NASIRZADE J, STRAUSS F J,et al. Platelet-rich fibrin suppresses in vitro osteoclastogenesis [J]. Journal of Periodontology, 2020, 91(3):413-421.
[74] WONG C C, OU K L, LIN Y H, et al. Platelet-richfibrin facilitates one-stage cartilage repair by promoting chondrocytes viability, migration, and matrix synthesis [J]. International Journal of Molecular Sciences,2020, 21(2): 577.
[75] MCDERMOTT I D. Patellar chondral defect treatment with a cell-free polyglycolic acid-hyaluronanbased implant and platelet-rich fibrin glue after previously failed microfracture [J]. SAGE Open MedicalCase Reports, 2019, 7: 2050313X18823470.
[76] BARBON S, STOCCO E, MACCHI V, et al. Plateletrich fibrin scaffolds for cartilage and tendon regenerative medicine: From bench to bedside [J]. InternationalJournal of Molecular Sciences, 2019, 20(7): 1701.
[77] TIWARI S, BAHADUR P. Modified hyaluronic acidbased materials for biomedical applications [J]. International Journal of Biological Macromolecules, 2019,121: 556-571.
[78] ACAR H, SRIVASTAVA S, CHUNG E J, et al. Selfassembling peptide-based building blocks in medical applications [J]. Advanced Drug Delivery Reviews,2017, 110/111: 65-79.
[79] OKESOLA B O, WU Y H, DERKUS B, et al.Supramolecular self-assembly to control structural andbiological properties of multicomponent hydrogels [J].Chemistry of Materials, 2019, 31(19): 7883-7897.
[80] WOLF K J, KUMAR S. Hyaluronic acid: Incorporating the bio into the material [J]. ACS BiomaterialsScience & Engineering, 2019, 5(8): 3753-3765.
[81] DOU X Q, FENG C L. Amino acids and peptidebased supramolecular hydrogels for three-dimensionalcell culture [J]. Advanced Materials, 2017, 29(16):1604062.
[82] LI S Y, WANG X, CAO B, et al. Effects of nanoscalespatial arrangement of arginine-glycine-aspartate peptides on dedifferentiation of chondrocytes [J]. NanoLetters, 2015, 15(11): 7755-7765.
[83] QIAO Y S, LIU X Z, ZHOU X C, et al. Gelatin templated polypeptide co-cross-linked hydrogel for boneregeneration [J]. Advanced Healthcare Materials, 2020,9(1): 1901239.
[84] THAMBI T, LI Y, LEE D S. Injectable hydrogels forsustained release of therapeutic agents [J]. Journal ofControlled Release, 2017, 267: 57-66.
[85] ZHENG H Y, YOSHITOMI T, YOSHIMOTO K.Analysis of chirality effects on stem cell fate usingthree-dimensional fibrous peptide hydrogels [J]. ACSApplied Bio Materials, 2018, 1(3): 538-543.
[86] UMAN S, DHAND A, BURDICK J A. Recent advances in shear-thinning and self-healing hydrogels forbiomedical applications [J]. Journal of Applied Polymer Science, 2020, 137(25): 48668.
[87] YADAV N, CHAUHAN M K, CHAUHAN V S. Shortto ultrashort peptide-based hydrogels as a platformfor biomedical applications [J]. Biomaterials Science,2020, 8(1): 84-100.
[88] O’BRIEN S, BRANNIGAN R P, IBANEZ R, etal. Biocompatible polypeptide-based interpenetratingnetwork (IPN) hydrogels with enhanced mechanicalproperties [J]. Journal of Materials Chemistry B, 2020,8(34): 7785-7791.
[89] OKESOLA B O, LAU H K, DERKUS B, et al.Covalent co-assembly between resilin-like polypeptideand peptide amphiphile into hydrogels with controllednanostructure and improved mechanical properties [J].Biomaterials Science, 2020, 8(3): 846-857.
[90] ANNABI N, RANA D, SANI E S, et al. Engineeringa sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing [J]. Biomaterials,2017, 139: 229-243.
[91] JIN H L, WAN C, ZOU Z W, et al. Tumor ablationand therapeutic immunity induction by an injectablepeptide hydrogel [J]. ACS Nano, 2018, 12(4): 3295-3310.
[92] GRIFFIN D R, ARCHANG M M, KUAN C H, et al.Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing [J].Nature Materials, 2021, 20(4): 560-569.
[93] FAROKHI M, MOTTAGHITALAB F, FATAHI Y, etal. Overview of silk fibroin use in wound dressings [J].Trends in Biotechnology, 2018, 36(9): 907-922.
[94] KOIVUSALO L, KAUPPILA M, SAMANTA S, etal. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of cornealepithelium and stroma [J]. Biomaterials, 2019, 225:119516.
[95] ZHU D Q, WANG H Y, TRINH P, et al. Elastin-likeprotein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilageregeneration [J]. Biomaterials, 2017, 127: 132-140.
[96] ZHANG X Z, CAI D D, ZHOU F F, et al. Targeting downstream subcellular YAP activity as a function of matrix stiffness with Verteporfin-encapsulatedchitosan microsphere attenuates osteoarthritis [J]. Biomaterials, 2020, 232: 119724.
[97] DAVIDSON M D, BAN E, SCHOONEN A C M, etal. Mechanochemical adhesion and plasticity in multi-fiber hydrogel networks [J]. Advanced Materials, 2020,32(8): 1905719.
[98] YANG J R, LI Y Q, LIU Y B, et al. Influence of hydrogel network microstructures on mesenchymal stemcell chondrogenesis in vitro and in vivo [J]. Acta Biomaterialia, 2019, 91: 159-172.
[99] JEYAKUMAR V, NICULESCU-MORZSA E,BAUER C, et al. Redifferentiation of articularchondrocytes by hyperacute serum and platelet richplasma in collagen type I hydrogels [J]. InternationalJournal of Molecular Sciences, 2019, 20(2): 316.
[100] BRETSCHNEIDER H, STIEHLER M, HARTMANNA, et al. Characterization of primary chondrocytes harvested from hips with femoroacetabular impingement[J]. Osteoarthritis and Cartilage, 2016, 24(9): 1622-1628.
[101] NOVAK T, SEELBINDER B, TWITCHELL C M, etal. Mechanisms and microenvironment investigation ofcellularized high density gradient collagen matrices viadensification [J]. Advanced Functional Materials, 2016,26(16): 2617-2628.