Medicine-Engineering Interdisciplinary Research

Numerical Study on Separation of Circulating Tumor Cell Using Dielectrophoresis in a Four-Electrode Microfluidic Device

Expand
  • (a. School of Mechanical Engineering; b. Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Received date: 2021-05-19

  Accepted date: 2021-05-31

  Online published: 2023-07-31

Abstract

This numerical study proposes a cell sorting technique based on dielectrophoresis (DEP) in a microfluidic chip. Under the joint effect of DEP and fluid drag, white blood cells and circulating tumor cells are separated because of different dielectric properties. First, the mathematical models of device geometry, single cell, DEP force, electric field, and flow field are established to simulate the cell motion. Based on the simulation model, important boundary parameters are discussed to optimize the cell sorting ability of the device. A proper matching relationship between voltage and flow rate is then provided. The inlet and outlet conditions are also investigated to control the particle motion in the flow field. The significance of this study is to verify the cell separating ability of the microfluidic chip, and to provide a logistic design for the separation of rare diseased cells.

Cite this article

WANG Yukuna (王雨坤), DING Xiantingb (丁显廷), ZHANG Zhinana (张执南) . Numerical Study on Separation of Circulating Tumor Cell Using Dielectrophoresis in a Four-Electrode Microfluidic Device[J]. Journal of Shanghai Jiaotong University(Science), 2023 , 28(4) : 391 . DOI: 10.1007/s12204-022-2459-9

References

[1] WARKIANI M E, KHOO B L, WU L, et al. Ultrafast, label-free isolation of circulating tumor cells fromblood using spiral microfluidics [J]. Nature Protocols,2016, 11(1): 134-148.
[2] GUPTA G P, MASSAGUé J. Cancer metastasis:Building a framework [J]. Cell, 2006, 127(4): 679-695.
[3] ABDULLA A, LIU W J, GHOLAMIPOUR-SHIRAZIA, et al. High-throughput isolation of circulating tumor cells using cascaded inertial focusing microfluidicchannel [J]. Analytical Chemistry, 2018, 90(7): 4397-4405.
[4] YAN B, FU S J, CHANG Y Y, et al. Mutational analysis of OCT4+ and OCT4? circulating tumour cells bysingle cell whole exome sequencing in stage I non-smallcell lung cancer patients [J]. Journal of Shanghai JiaoTong University (Science), 2021, 26(1): 40-46.
[5] MICALIZZI D S, MAHESWARAN S, HABER D A. Aconduit to metastasis: Circulating tumor cell biology[J]. Genes & Development, 2017, 31(18): 1827-1840.
[6] KIM H J, JANG W K, KIM B H, et al. Advancing liquid front shape control in capillary filling ofmicrochannel via arrangement of microposts for microfluidic biomedical Sensors [J]. International Journal of Precision Engineering and Manufacturing, 2016,17(1): 59-63.
[7] SARKAR A, HOU H W, MAHAN A E, et al. Multiplexed affinity-based separation of proteins and cellsusing inertial microfluidics [J]. Scientific Reports, 2016,6: 23589.
[8] MARISCAL J, ALONSO-NOCELO M, MUINELOROMAY L, et al. Molecular profiling of circulating tumour cells identifies Notch1 as a principal regulatorin advanced non-small cell lung cancer [J]. ScientificReports, 2016, 6: 37820.
[9] CHEN Q, YAO L, BURNER D, et al. Epithelial membrane protein 2: A novel biomarker for circulatingtumor cell recovery in breast cancer [J]. Clinical andTranslational Oncology, 2019, 21(4): 433-442.
[10] GOU Y X, ZHANG S, SUN C K, et al. Sheathlessinertial focusing chip combining a spiral channel withperiodic expansion structures for efficient and stableparticle sorting [J]. Analytical Chemistry, 2020, 92(2):1833-1841.
[11] JOHNSTON I D, MCDONNELL M B, TAN C K L,et al. Dean flow focusing and separation of small microspheres within a narrow size range [J]. Microfluidicsand Nanofluidics, 2014, 17(3): 509-518.
[12] MALEKMOHAMMADI M, AKHLAGHI E A,SOLTANI J, et al. Escape velocity sorting in opticaltweezers system using a home-made piezo mirror [J].Journal of Optics, 2020, 22(5): 055301.
[13] TEWARI KUMAR P, DECROP D, SAFDAR S, etal. Digital microfluidics for single bacteria capture andselective retrieval using optical tweezers [J]. Micromachines, 2020, 11(3): 308.
[14] ANTFOLK M, MAGNUSSON C, AUGUSTSSON P,et al. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from whiteblood cells [J]. Analytical Chemistry, 2015, 87(18):9322-9328.
[15] GU Y Y, CHEN C Y, MAO Z M, et al. Acoustofluidiccentrifuge for nanoparticle enrichment and separation[J]. Science Advances, 2021, 7(1): eabc0467.
[16] SHI J Y, LI S Y, ZHANG X F. The acoustic radiationforce on a multi-layered polymer capsule placed in afluid-filled tube [J]. Ultrasonics, 2021, 113: 106365.
[17] PIACENTINI N, MERNIER G, TORNAY R, etal. Separation of platelets from other blood cellsin continuous-flow by dielectrophoresis field-flowfractionation [J]. Biomicrofluidics, 2011, 5(3): 34122-34128.
[18] VAN DEN DRIESCHE S, RAO V, PUCHBERGERENENGL D, et al. Continuous cell from cell separation by traveling wave dielectrophoresis [J]. Sensorsand Actuators B: Chemical, 2012, 170: 207-214.
[19] RASHED M Z, WILLIAMS S J. Advances and applications of isomotive dielectrophoresis for cell analysis [J]. Analytical and Bioanalytical Chemistry, 2020,412(16): 3813-3833.
[20] ABT V, GRINGEL F, HAN A, et al. Separation,characterization, and handling of microalgae by dielectrophoresis [J]. Microorganisms, 2020, 8(4): 540.
[21] LIN X G, YAO J, DONG H, et al. Effective celland particle sorting and separation in screen-printedcontinuous-flow microfluidic devices with 3D sidewallelectrodes [J]. Industrial & Engineering Chemistry Research, 2016, 55(51): 13085-13093.
[22] ALAZZAM A, MATHEW B, ALHAMMADI F. Novelmicrofluidic device for the continuous separation ofcancer cells using dielectrophoresis [J]. Journal of Separation Science, 2017, 40(5): 1193-1200.
[23] MILOH T, NAGLER J. Travelling-wave dipolophoresis: Levitation and electrorotation of Janus nanoparticles [J]. Micromachines, 2021, 12(2): 114.
[24] SIM K, SHI L L, HE G L, et al. Mechanically flexible microfluidics for microparticle dispensing basedon traveling wave dielectrophoresis [J]. Journal ofMicromechanics and Microengineering, 2020, 30(2):024001.
[25] EGGER M, DONATH E. Electrorotation measurements of diamide-induced platelet activation changes[J]. Biophysical Journal, 1995, 68(1): 364-372.
[26] GARCíA-SáNCHEZ P, REN Y K, ARCENEGUI J J,et al. Alternating current electrokinetic properties ofgold-coated microspheres [J]. Langmuir, 2012, 28(39):13861-13870.
[27] TRAINITO C I, BAYART E, SUBRA F, et al. Theelectrorotation as a tool to monitor the dielectric properties of spheroid during the permeabilization [J]. TheJournal of Membrane Biology, 2016, 249(5): 593-600.
[28] HUANG L, ZHAO P, LIANG F, et al. Single-cell3D electro-rotation [J]. Methods in Cell Biology, 2018,148: 97-116.
[29] KIRBY B. Micro- and nanoscale fluid mechanics [M].Cambridge: Cambridge University Press, 2009.
[30] GASCOYNE P R C, VYKOUKAL J. Particle separation by dielectrophoresis [J]. Electrophoresis, 2002,23(13): 1973-1983.
[31] ALI H, PARK C W. Numerical study on the completeblood cell sorting using particle tracing and dielectrophoresis in a microfluidic device [J]. Korea-AustraliaRheology Journal, 2016, 28(4): 327-339.
[32] HENSLEE E A, SANO M B, ROJAS A D, et al. Selective concentration of human cancer cells using contactless dielectrophoresis [J]. Electrophoresis, 2011, 32(18):2523-2529.
[33] LANNIN T, SU W W, GRUBER C, et al. Automatedelectrorotation shows electrokinetic separation of pancreatic cancer cells is robust to acquired chemotherapy resistance, serum starvation, and EMT [J]. Biomicrofluidics, 2016, 10(6): 064109.
[34] FUHR G, GLASSER H, MüLLER T, et al. Cell manipulation and cultivation under a.c. electric field influence in highly conductive culture media [J]. Biochimicaet Biophysica Acta, 1994, 1201(3): 353-360.
[35] COTTET J, FABREGUE O, BERGER C, et al.MyDEP: A new computational tool for dielectric modeling of particles and cells [J]. Biophysical Journal,2019, 116(1): 12-18.
Outlines

/