[1] CAO Q, BROERSEN A, DE GRAAF M A, et al.Automatic identification of coronary tree anatomyin coronary computed tomography angiography [J].The International Journal of Cardiovascular Imaging,2017, 33(11): 1809-1819.
[2] KHALIL A, NG S C, LIEW Y M, et al. An overviewon image registration techniques for cardiac diagnosisand treatment [J]. Cardiology Research and Practice,2018, 2018: 1437125.
[3] GANSER K A, DICKHAUS H, METZNER R, et al.A deformable digital brain atlas system according toTalairach and Tournoux [J]. Medical Image Analysis,2004, 8(1): 3-22.
[4] HU S, WEI L, GAO Y, et al. Learning-based de-formable image registration for infant MR images in the first year of life [J]. Medical Physics, 2017, 44(1):158-170.
[5] ZITOV á B, FLUSSER J. Image registration methods: A survey [J]. Image and Vision Computing, 2003,21(11): 977-1000.
[6] OLIVEIRA F P M, TA V ARES J M R S. Medical image registration: A review [J]. Computer Method sin Biomechanics and Biomedical Engineering, 2014,17(2): 73-93.
[7] SMITH S M, BRADY J M. SUSAN: A new approach to low level image processing [J]. International Journal of Computer Vision, 1997, 23(1): 45-78.
[8] LOWE D G. Distinctive image features from scale-invariant key points [J]. International Journal of Computer Vision , 2004, 60(2): 91-110.
[9] LI Z, HUANG F, ZHANG J, et al. Multi-modal and multi-vendor retina image registration [J]. Biomedical Optics Express, 2018, 9(2): 410-422.
[10] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF) [J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
[11] SANG Q, ZHANG J, YU Z. Robust non-rigid point registration based on feature-dependant finite mixture model [J]. Pattern Recognition Letters, 2013, 34(13):1557-1565.
[12] XIANG Z, LI M, XIAO L, et al. Deformable registration of chest radiographs using B-spline based method with modified residual complexity [J]. Journal of Shanghai Jiao Tong University (Science), 2019,24(2): 226-232.
[13] BROIT C. Optimal registration of deformed images[D]. Philadelphia, USA: University of Pennsylvania,1981.
[14] SCHNABEL J A, TANNER C, CASTELLANO-SMITH A D, et al. Validation of nonrigid image registration using finite-element methods: Application to breast MR images [J]. IEEE Transactions on Medical Imaging, 2003, 22(2): 238-247.
[15] THIRION J P. Image matching as a diffusion process:An analogy with Maxwell’s demons [J]. Medical Image Analysis, 1998, 2(3): 243-260.
[16] W ANG C, REN Q, QIN X, et al. Adaptive diffeomorphic multiresolution demons and their application to same modality medical image registration with large deformation [J]. International Journal of Biomedical Imaging, 2018, 2018: 7314612.
[17] CHAKRABORTY S, PRADHAN R, ASHOUR A S, et al. Grey-wolf-based Wang’s demons for retinal image registration [J]. Entropy, 2020, 22(6): 659.
[18] LIAO S, CHUNG A C S. Non-rigid image registration with uniform spherical structure patterns[M]//Information processing in medical imaging.Berlin, Heidelberg: Springer, 2009: 163-175.
[19] XUE Z, SHEN D, DA V ATZIKOS C. CLASSIC: Consistent longitudinal alignment and segmentation for se-rial image computing [J]. NeuroImage, 2006, 30(2):388-399.
[20] WU G, QI F, SHEN D. Learning-based deformable registration of MR brain images [J]. IEEE Transactions on Medical Imaging, 2006, 25(9): 1145-1157.
[21] MCEACHEN J C, DUNCAN J S. Shape-based tracking of left ventricular wall motion [J]. IEEE Transactions on Medical Imaging, 1997, 16(3): 270-283.
[22] BHATNAGAR G, WU Q M J, LIU Z. Directive contrast based multimodal medical image fusion in NSCT domain [J]. IEEE Transactions on Multimedia, 2013,15(5): 1014-1024.
[23] RUECKERT D, ALJABAR P, HECKEMANN R A,et al. Diffeomorphic registration using B-splines [M]//Medical image computing and computer-assisted intervention - MICCAI 2006. Berlin, Heidelberg: Springer,2006: 702-709.
[24] CHOI Y, LEE S. Injectivity conditions of 2D and 3Duniform cubic B-spline functions [J]. Graphical Models,2000, 62(6): 411-427.
[25] ASHBURNER J, FRISTON K J. Nonlinear spatial normalization using basis functions [J]. Human Brain Mapping, 1999, 7(4): 254-266.
[26] RUECKERT D, SONODA L I, HAYES C, et al. Non-rigid registration using free-form deformations: Application to breast MR images [J]. IEEE Transactions on Medical Imaging, 1999, 18(8): 712-721.
[27] AUER M, REGITNIG P, HOLZAPFEL G A. An automatic nonrigid registration for stained histologicalsections [J]. IEEE Transactions on Image Processing,2005, 14(4): 475-486.
[28] SHEKHAR R, ZAGRODSKY V, GARCIA M J, et al. Registration of real-time 3-D ultrasound images of the heart for novel 3-D stress echocardiography [J]. IEEE Transactions on Medical Imaging, 2004, 23(9): 1141-1149.
[29] KANG J T, ZHANG Y Z, QIN S Q. A hybrid evolutionary algorithm for identifying multiple alternativesin model updating [J]. Journal of Shanghai Jiao Tong University, 2020, 54(6): 652-660 (in Chinese).
[30] LOECKX D, MAES F, V ANDERMEULEN D, et al.Temporal subtraction of thorax CR images using a statistical deformation model [J]. IEEE Transactions on Medical Imaging, 2003, 22(11): 1490-1504.
[31] LI X Q, CHANG Q. A hybrid nonrigid medical image registration method on chest radiography [C]//202013th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics(CISP-BMEI ). Chengdu, China: IEEE, 2020: 651-657.
[32] XIANG J, ZHANG J, W ANG B, et al. Low data over-lap rate graph-based SLAM with distributed submapstrategy [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 650-658.
[33] ROTH S, LEMPITSKY V, ROTHER C. Discrete-continuous optimization for optical flow estimation[M]//Statistical and geometrical approaches to visual motion analysis. Berlin, Heidelberg: Springer, 2009:1-22.
[34] ZIKIC D, GLOCKER B, KUTTER O, et al. Lin-ear intensity-based image registration by Markov random fields and discrete optimization [J]. Medical Image Analysis, 2010, 14(4): 550-562.
[35] PORCHETTO R, STRAMANA F, PARAGIOS N, et al. Rigid slice-to-volume medical image registration through Markov random fields [C]//Medical computer vision and Bayesian and graphical models for biomed-ical imaging. Cham: Spring, 2017: 172-185.
[36] KOMODAKIS N, TZIRITAS G, PARAGIOS N. Per-formance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of theart with primal-dual strategies [J]. Computer Visionand Image Understanding, 2008, 112(1): 14-29.
[37] BOYKOV Y, VEKSLER O, ZABIH R. Fast approximate energy minimization via graph cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239.
[38] HEINRICH M P, JENKINSON M, BRADY M, et al.MRF-based deformable registration and ventilation estimation of lung CT [J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1239-1248.
[39] BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? [J]. IEEE Transactions on Medical Imaging,2018, 37(11): 2514-2525.
[40] MUELLER S G, WEINER M W, THAL L J, et al.Ways toward an early diagnosis in Alzheimer’s dis-ease: The Alzheimer’s Disease Neuroimaging Initiative(ADNI) [J]. Alzheimer’s & Dement, 2005, 1(1): 55-66.
[41] W ANG X, PENG Y, LU L, et al. ChestX-Ray8:Hospital-scale chest X-ray database and bench markson weakly-supervised classification and localization of common thorax diseases [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. H o nolulu, USA: IEEE, 2017: 3462-3471.
[42] CASTILLO R, CASTILLO E, FUENTES D, et al.A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive [J]. Physics in Medicine and Biology, 2013,58(9): 2861-2877.
[43] W ANG H, DONG L, O’DANIEL J, et al. Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy [J]. Physics in Medicine and Biology, 2005, 50(12): 2887-2905.
[44] A V ANTS B B, EPSTEIN C L, GROSSMAN M, etal. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J]. Medical Image Analysis, 2008, 12(1): 26-41.
[45] KLEIN S, STARING M, MURPHY K, et al. Elastix:A toolbox for intensity-based medical image registration [J]. IEEE Transactions on Medical Imaging, 2010,29(1): 196-205.
[46] A V ANTS B B, TUSTISON N J, SONG G, et al. A re-producible evaluation of ANTs similarity metric performance in brain image registration [J]. NeuroImage,2011, 54(3): 2033-2044.