[1] NEGUT I, GRUMEZESCU V, GRUMEZESCU A. Treatment strategies for infected wounds [J].Molecules, 2018, 23(9): 2392.
[2] WANG G Q, XIA Z F. Monocyte subsets and their differentiation tendency after burn injury [J]. Frontiers of Medicine, 2013, 7(4): 397-400.
[3] DI BENEDETTO P, RUSCITTI P, VADASZ Z, et al. Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases[J]. Autoimmunity Reviews, 2019, 18(10): 102369.
[4] TANG S, WAN M, HUANG W, et al. Maresins: Specialized proresolving lipid mediators and their potential role in inflammatory-related diseases [J]. Mediators of Inflammation, 2018, 2018: 2380319.
[5] LIU L, MAO Y, XU B C, et al. Induction of neutrophil extracellular traps during tissue injury: Involvement of STING and Toll-like receptor 9 pathways[J]. Cell Proliferation, 2019, 52(3): e12579.
[6] MANJILI F A, YOUSEFI-AHMADIPOUR A,ARABABADI M K. The roles played by TLR4 in the pathogenesis of multiple sclerosis; A systematic review article [J]. Immunology Letters, 2020, 220: 63-70.
[7] HOU S, LIU Z, SHEN H, et al. Damage-associated molecular pattern-triggered immunity in plants [J].Frontiers in Plant Science, 2019, 10: 646.
[8] NA Y R, JE S, SEOK S H. Metabolic features of macrophages in inflammatory diseases and cancer [J].Cancer Letters, 2018, 413: 46-58.
[9] YAG¨UE-CAPILLA M, GARC′IA-CABALLERO D,AGUILAR-PEREYRA F, et al. Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei [J]. Free Radical Biology and Medicine, 2019, 131: 59-71.
[10] CAMPANA L, STARKEY LEWIS P J, PELLICORO A, et al. The STAT3-IL-10-IL-6 pathway is a novel regulator of macrophage efferocytosis and phenotypic conversion in sterile liver injury [J]. Journal of Immunology, 2018, 200(3): 1169-1187.
[11] OISHI Y,MANABE I.Macrophages in inflammation,repair and regeneration [J]. International Immunology,2018, 30(11): 511-528.
[12] MARTINEZ F O, GORDON S. The M1 and M2paradigm of macrophage activation: Time for reassessment[J]. F1000Prime Reports, 2014, 6: 13.
[13] MANTOVANI A, SICA A, SOZZANI S, et al. The chemokine system in diverse forms of macrophage activation and polarization [J]. Trends in Immunology,2004, 25(12): 677-686.
[14] PEMMARI A, LEPP¨ANEN T, PAUKKERI E L, et al. Attenuating effects of nortrachelogenin on IL-4 and IL-13 induced alternative macrophage activation and on bleomycin-induced dermal fibrosis [J]. Journal of Agricultural and Food Chemistry, 2018, 66(51):13405-13413.
[15] SU S, ZHAO Q, HE C, et al. miR-142-5p and miR-130a-p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program [J]. Nature Communications,2015, 6: 8523.
[16] WANG L X, ZHANG S X, WU H J, et al. M2b macrophage polarization and its roles in diseases [J].Journal of Leukocyte Biology, 2019, 106(2): 345-358.
[17] LAI Y S, PUTRA R B D S, AUI S P, et al. M2C polarization by baicalin enhances efferocytosis via upregulation of MERTK receptor [J]. The American Journal of Chinese Medicine, 2018, 46(8): 1899-1914.
[18] LURIER E B, DALTON D, DAMPIER W, et al.Transcriptome analysis of IL-10-stimulated (M2c)macrophages by next-generation sequencing [J]. Immunobiology,
[19] ROHANI M G, PARKS W C. Matrix remodeling by MMPs during wound repair [J]. Matrix Biology, 2015,44/45/46: 113-121.
[20] ARORA S, DEV K, AGARWAL B, et al.Macrophages: Their role, activation and polarization in pulmonary diseases [J]. Immunobiology, 2018,223(4/5): 383-396.
[21] GUO C, BURANYCH A, SARKAR D, et al. The role of tumor-associated macrophages in tumor vascularization[J]. Vascular Cell, 2013, 5(1): 20.
[22] WYNN T A, VANNELLA K M. Macrophages in tissue repair, regeneration, and fibrosis [J]. Immunity,2016, 44(3): 450-462.
[23] ITALIANI P, MAZZA E M, LUCCHESI D, et al.Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro[J]. PLoS One, 2014, 9(2): e87680.
[24] DAVID S, GREENHALGH A D, KRONER A.Macrophage and microglial plasticity in the injured spinal cord [J]. Neuroscience, 2015, 307: 311-318.
[25] YU T, ZHAO L, HUANG X, et al. Enhanced activity of the macrophage M1/M2 phenotypes and phenotypic switch to M1 in periodontal infection [J]. Journal of Periodontology, 2016, 87(9): 1092-1102.
[26] DALEY J M, BRANCATO S K, THOMAY A A, etal. The phenotype of murine wound macrophages [J].Journal of Leukocyte Biology, 2010, 87(1): 59-67.
[27] KIM H, WANG S Y, KWAK G, et al. Exosomeguided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing [J]. Advanced Science,2019, 6(20): 1900513.
[28] KLUTH D C. Pro-resolution properties of macrophages in renal injury [J]. Kidney International,2007, 72(3): 234-236.
[29] MITCHELL S, THOMAS G, HARVEY K, et al.Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: Stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo [J]. Journal of the American Society of Nephrology, 2002, 13(10): 2497-2507.
[30] HU M S, WALMSLEY G G, BARNES L A, et al.Delivery of monocyte lineage cells in a biomimetic scaffold enhances tissue repair [J]. JCI Insight, 2017,2(19): 96260.
[31] CHEN L, DENG H, CUI H, et al. Inflammatory responses and inflammation-associated diseases in organs[J]. Oncotarget, 2018, 9(6): 7204-7218.
[32] MIRZA R, DIPIETRO L A, KOH T J. Selective and specific macrophage ablation is detrimental to wound healing in mice [J]. The American Journal of Pathology,2009, 175(6): 2454-2462.
[33] ZHANG M Z, YAO B, YANG S, et al. CSF-1 signaling mediates recovery from acute kidney injury [J].The Journal of Clinical Investigation, 2012, 122(12):4519-4532.
[34] LUCAS T, WAISMAN A, RANJAN R, et al. Differential roles of macrophages in diverse phases of skin repair [J]. Journal of Immunology, 2010, 184(7):3964-3977.
[35] HAMED S, BENNETT C L, DEMIOT C, et al. Erythropoietin,a novel repurposed drug: An innovative treatment for wound healing in patients with diabetes mellitus [J]. Wound Repair and Regeneration, 2014,22(1): 23-33.
[36] LEE J H, KAM E H, KIM S Y, et al. Erythropoietin attenuates postoperative cognitive dysfunction by shifting macrophage activation toward the M2 phenotype [J]. Frontiers in Pharmacology, 2017, 8:839.
[37] CALEY M P, MARTINS V L C, O’TOOLE E A.Metalloproteinases and wound healing [J]. Advances in Wound Care, 2015, 4(4): 225-234.
[38] MADSEN D H, LEONARD D, MASEDUNSKAS A, et al. M2-like macrophages are responsible for collagen degradation through a mannose receptormediated pathway [J]. The Journal of Cell Biology,2013, 202(6): 951-966.
[39] WALMSLEY G G, MAAN Z N, WONG V W, et al. Scarless wound healing: Chasing the holy grail [J]. Plastic and Reconstructive Surgery, 2015, 135(3): 907-917.
[40] BROWN J J, BAYAT A. Genetic susceptibility to raised dermal scarring [J]. British Journal of Dermatology,2009, 161(1): 8-18.
[41] ZHANG J L, QIAO Q, LIU M D, et al. IL-17 promotes scar formation by inducing macrophage infiltration [J]. The American Journal of Pathology, 2018,188(7): 1693-1702.
[42] GOREN I, ALLMANN N, YOGEV N, et al. A transgenic mouse model of inducible macrophage depletion: Effects of diphtheria toxin-driven lysozyme Mspecific cell lineage ablation on wound inflammatory,angiogenic, and contractive processes [J]. The American Journal of Pathology, 2009, 175(1): 132-147.
[43] MCWHORTER F Y, DAVIS C T, LIU W F. Physical and mechanical regulation of macrophage phenotype and function [J]. Cellular and Molecular Life Sciences, 2015, 72(7): 1303-1316.
[44] JAIN N, MOELLER J, VOGEL V. Mechanobiology of macrophages: How physical factors coregulate macrophage plasticity and phagocytosis [J]. Annual Review of Biomedical Engineering, 2019, 21: 267-297.
[45] FENG Y, SUN Z L, LIU S Y, et al. Direct and indirect roles of macrophages in hypertrophic scar formation [J]. Frontiers in Physiology, 2019, 10: 1101.
[46] MURRAY L A, ROSADA R, MOREIRA A P, et al.Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages [J]. PLoS One, 2010, 5(3): e9683.
[47] JIN Q, GUI L, NIU F, et al. Macrophages in keloid are potent at promoting the differentiation and function of regulatory T cells [J]. Experimental Cell Research,2018, 362(2): 472-476.
[48] KLINKERT K, WHELAN D, CLOVER A J P, et al. Selective M2 macrophage depletion leads to prolonged inflammation in surgical wounds [J]. European Surgical Research, 2017, 58(3/4): 109-120.
[49] TANG P M, NIKOLIC-PATERSON D J, LAN H Y. Macrophages: Versatile players in renal inflammation and fibrosis [J]. Nature Reviews Nephrology,2019, 15(3): 144-158.
[50] DENG L, HUANG L, GUO Q Y, et al. CREB1 and Smad3 mediate TGF-β3-induced Smad7 expression in rat hepatic stellate cells [J]. Molecular Medicine Reports, 2017, 16(6): 8455-8462.
[51] GIBBONS M A, MACKINNON A C, RAMACHANDRAN P, et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis [J]. American Journal of Respiratory and Critical Care Medicine, 2011, 184(5): 569-581.
[52] WYNN T A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases [J].The Journal of Clinical Investigation, 2007, 117(3):524-529.
[53] MORIKAWA M, DERYNCK R, MIYAZONO K.TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology [J]. Cold Spring Harbor Perspectives in Biology, 2016, 8(5): a021873.
[54] MENG X M, NIKOLIC-PATERSON D J, LAN H Y.TGF-β: The master regulator of fibrosis [J]. Nature Reviews Nephrology, 2016, 12(6): 325-338.
[55] KLINKHAMMER B M, FLOEGE J, BOOR P.PDGF in organ fibrosis [J]. Molecular Aspects of Medicine, 2018, 62: 44-62.
[56] FORCINA L, MIANO C, SCICCHITANO B M, et al.Signals from the niche: Insights into the role of IGF-1 and IL-6 in modulating skeletal muscle fibrosis [J].Cells, 2019, 8(3): 232
[57] SHI J, LI J, GUAN H, et al. Anti-fibrotic actions of interleukin-10 against hypertrophic scarring by activation of PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts [J]. PLoS One, 2014, 9(5):e98228.
[58] HE T, BAI X Z, JING J, et al. Notch signal deficiency alleviates hypertrophic scar formation after wound healing through the inhibition of inflammation [J].Archives of Biochemistry and Biophysics, 2020, 682:108286.
[59] ARNO A I, GAUGLITZ G G, BARRET J P, et al.Up-to-date approach to manage keloids and hypertrophic scars: A useful guide [J]. Burns, 2014, 40(7):1255-1266.
[60] DARDENNE A D, WULFF B C, WILGUS T A. The alarmin HMGB-1 influences healing outcomes in fetal skin wounds [J]. Wound Repair and Regeneration,2013, 21(2): 282-291.
[61] LU S W, ZHANG X M, LUO H M, et al. Clodronate liposomes reduce excessive scar formation in a mouse model of burn injury by reducing collagen deposition and TGF-β1 expression [J]. Molecular Biology Reports, 2014, 41(4): 2143-2149.
[62] ZHU Z S, DING J, MA Z S, et al. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation [J]. Wound Repair and Regeneration, 2016, 24(4): 644-656.
[63] BAECK C, WEI X, BARTNECK M, et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice [J].Hepatology, 2014, 59(3): 1060-1072.
[64] CHEN L, ZHOU X, FAN L. X, et al. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease [J]. The Journal of Clinical Investigation, 2015, 125(6): 2399-2412.
[65] MURRAY L A, CHEN Q, KRAMER M S, et al.TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P [J]. The International Journal of Biochemistry & Cell Biology,2011, 43(1): 154-162.
[66] UENO M, MAENO T, NISHIMURA S, et al. Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages [J]. Nature Communications,2015, 6: 6332.
[67] WILLENBORG S, EMING S A. Cellular networks in wound healing [J]. Science, 2018,362(6417): 891-892.
[68] PEREZ-ASO M, CHIRIBOGA L, CRONSTEIN B N. Pharmacological blockade of adenosine A2A receptors diminishes scarring [J]. The FASEB Journal,2012, 26(10): 4254-4263.
[69] TREDGET E E, WANG R, SHEN Q, et al. Transforming growth factor-beta mRNA and protein in hypertrophic scar tissues and fibroblasts: Antagonism by IFN-alpha and IFN-gamma in vitro and in vivo[J]. Journal of Interferon & Cytokine Research, 2000,20(2): 143-151.
[70] DARAKHSHAN S, POUR A B. Tranilast: A review of its therapeutic applications [J]. Pharmacological Research, 2015, 91: 15-28.
[71] WANG R, MAO Y, ZHANG Z, et al. Role of verapamil in preventing and treating hypertrophic scars and keloids [J]. International Wound Journal, 2016,13(4): 461-468.
[72] YANG S, HUANG S, FENG C, et al. Umbilical cordderived mesenchymal stem cells: Strategies, challenges,and potential for cutaneous regeneration [J].Frontiers of Medicine, 2012, 6(1): 41-47.
[73] BAI D S, ZHAO Y, ZHU Q, et al. LZ205, a newly synthesized flavonoid compound, exerts antiinflammatory effect by inhibiting M1 macrophage polarization through regulating PI3K/AKT/mTOR signaling pathway [J]. Experimental Cell Research, 2018,364(1): 84-94.
[74] CAMILLE N, DEALTRY G. Regulation of M1/M2 macrophage polarization by Sutherlandia frutescens via NFκB and MAPK signaling pathways [J]. South African Journal of Botany, 2018, 116: 42-51.
[75] JI J, XIANG P, LI T, et al. NOSH-NBP, a novel nitric oxide and hydrogen sulfide-releasing hybrid, attenuates ischemic stroke-induced neuroinflammatory injury by modulating microglia polarization [J]. Frontiers in Cellular Neuroscience, 2017, 11: 154.
[76] DUGO L, BELLUOMO M G, FANALI C, et al. Effect of cocoa polyphenolic extract on macrophage polarization from proinflammatory M1 to antiinflammatory M2 state [J]. Oxidative Medicine and Cellular Longevity, 2017, 2017: 6293740.
[77] BISSONNETTE E Y, PROULX L I, TURMEL V,et al. PCT-233, a novel modulator of pro- and antiinflammatory cytokine production [J]. Clinical & Experimental Immunology, 2004, 135(3): 440-447.
[78] SAKSIDA T, VUJICIC M, NIKOLIC I, et al. CompoundA, a selective glucocorticoid receptor agonist,inhibits immunoinflammatory diabetes, inducedby multiple low doses of streptozotocin in mice [J].British Journal of Pharmacology, 2014, 171(24):5898-5909.
[79] CHANG Y, JIA X, WEI F, et al. CP-25, a novelcompound, protects against autoimmune arthritis bymodulating immune mediators of inflammation andbone damage [J]. Scientific Reports, 2016, 6: 26239.
[80] ZHONG Y, CHIOU Y S, PAN M H, et al.Anti-inflammatory activity of lipophilic epigallocatechingallate (EGCG) derivatives in LPS-stimulatedmurine macrophages [J]. Food Chemistry, 2012,134(2): 742-748.
[81] LIU J, LI K, ZHOU J, et al. Bisperoxovanadium inducesM2-type macrophages and promotes functionalrecovery after spinal cord injury [J]. Molecular Immunology,2019, 116: 56-62.
[82] ZHANG Y K, WANG J, LIU L, et al. The effect ofLyciumbarbarum on spinal cord injury, particularlyits relationship with M1 and M2 macrophage in rats[J]. BMC Complementary and Alternative Medicine,2013, 13: 67.
[83] LI D, LIU Q Y, SUN W, et al. 1,3,6,7-Tetrahydroxy-8-prenylxanthone ameliorates inflammatoryresponses resulting from the paracrineinteraction of adipocytes and macrophages [J].British Journal of Pharmacology, 2018, 175(10):1590-1606.
[84] LI T, PENG M Z, YANG Z Z, et al. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphatescaffold sequentially activates M1 and M2 polarizationof macrophages to promote vascularization oftissue engineering bone [J]. Acta Biomaterialia, 2018,71: 96-107.
[85] FENG X J, QIN H H, SHI Q, et al. Chrysin attenuatesinflammation by regulating M1/M2 statusvia activating PPARγ [J]. Biochemical Pharmacology,2014, 89(4): 503-514.
[86] XU G, FENG L L, SONG P P, et al. Isomeranzin suppressesinflammation by inhibiting M1 macrophagepolarization through the NF-κB and ERK pathway[J]. International Immunopharmacology, 2016, 38:175-185.
[87] ZHANG X, XU F, LIU L, et al. (+)-Borneol improves the efficacy of edaravone against DSS-inducedcolitis by promoting M2 macrophages polarizationvia JAK2-STAT3 signaling pathway [J]. InternationalImmunopharmacology, 2017, 53: 1-10.
[88] PEI Z Y, WANG S H. Sevoflurane suppresses microglialM2 polarization [J]. Neuroscience Letters,2017, 655: 160-165.
[89] WEN M Y, YE J K, HAN Y L, et al. Hypertonicsaline regulates microglial M2 polarization via miR-200b/KLF4 in cerebral edema treatment [J]. Biochemicaland Biophysical Research Communications,2018, 499(2): 345-353.
[90] MEIRELES M, MARQUES C, NORBERTO S, et al.Anthocyanin effects on microglia M1/M2 phenotype:Consequence on neuronal fractalkine expression [J].Behavioural Brain Research, 2016, 305: 223-228.
[91] FENG X J, WENG D, ZHOU F F, et al. Activationof PPARγ by a natural flavonoid modulator, apigeninameliorates obesity-related inflammation via regulationof macrophage polarization [J]. EBioMedicine,2016, 9: 61-76.
[92] YU X M, XU M Y, LI N, et al. β-elemene inhibitstumor-promoting effect of M2 macrophages inlung cancer [J]. Biochemical and Biophysical ResearchCommunications, 2017, 490(2): 514-520.
[93] YANG X D, XU S Q, QIAN Y W, et al. Resveratrolregulates microglia M1/M2 polarization via PGC-1αin conditions of neuroinflammatory injury [J]. Brain,Behavior, and Immunity, 2017, 64: 162-172.
[94] IWANOWYCZ S, WANG J, ALTOMARE D, et al.Emodin bidirectionally modulates macrophage polarizationand epigenetically regulates macrophagememory [J]. The Journal of Biological Chemistry,2016, 291(22): 11491-11503.
[95] LARA-GUZMAN O J, TABARES-GUEVARA J H, LEON-VARELA Y M, et al. Proatherogenicmacrophage activities are targeted by the flavonoidquercetin [J]. The Journal of Pharmacology and ExperimentalTherapeutics, 2012, 343(2): 296-306.
[96] CHAN K L, PILLON N J, SIVALOGANATHAN D M, et al. Palmitoleate reverses high fat-inducedproinflammatory macrophage polarization via AMPactivatedprotein kinase (AMPK) [J]. Journal of BiologicalChemistry, 2015, 290(27): 16979-16988.
[97] ZHOU E S, LI Y M, YAO M J, et al. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms [J]. International Immunopharmacology, 2014, 23(1): 121-126.
[98] KANG C H, JAYASOORIYA R G P T, CHOI Y H, et al. β-Ionone attenuates LPS-induced proinflammatory mediators such as NO, PGE2 and TNF-α in BV2 microglial cells via suppression of theNF-κB and MAPK pathway [J]. Toxicology in Vitro,2013, 27(2): 782-787.
[99] LAN X, HAN X N, LI Q, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia [J].Brain, Behavior, and Immunity, 2017, 61: 326-339.
[100] TALMON M, ROSSI S, PASTORE A, et al. Vortioxetineexerts anti-inflammatory and immunomodulatoryeffects on human monocytes/macrophages [J].British Journal of Pharmacology, 2018, 175(1): 113-124.
[101] VELTMAN J D, LAMBERS M E, VAN NIMWEGEN M, et al. Zoledronic acid impairs myeloid differentiationto tumour-associated macrophages inmesothelioma [J]. British Journal of Cancer, 2010,103(5): 629-641.
[102] KIM S Y, MOON K A, JO H Y, et al. Antiinflammatory effects of apocynin, an inhibitor of NADPH oxidase, in airway inflammation [J]. Immunology and Cell Biology, 2012, 90(4): 441-448.
[103] HART P H, BRAND C, CARSON C F, et al.Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes [J]. Inflammation Research, 2000, 49(11):619-626.
[104] NOGUEIRA M N M, AQUINO S G, ROSSA JUNIOR C, et al. Terpinen-4-ol and alpha-terpineol (teatree oil components) inhibit the production of IL-1β,IL-6 and IL-10 on human macrophages [J]. InflammationResearch, 2014, 63(9): 769-778.
[105] PARK H Y, HAN M H, PARK C, et al. Antiinflammatoryeffects of fucoidan through inhibitionof NF-κB, MAPK and Akt activation inlipopolysaccharide-induced BV2 microglia cells [J].Food and Chemical Toxicology, 2011, 49(8): 1745-1752.
[106] LI L, HAMILTON R F, TAYLOR D E, etal. Acrolein-induced cell death in human alveolarmacrophages [J]. Toxicology and Applied Pharmacology,1997, 145(2): 331-339.
[107] KOHNO K, MIYAKE M, SANO O, et al. Antiinflammatoryand immunomodulatory properties of2-amino-3H-phenoxazin-3-one [J]. Biological & PharmaceuticalBulletin, 2008, 31(10): 1938-1945.
[108] DONG R, GONG Y L, MENG W, et al. The involvementof M2 macrophage polarization inhibitionin fenretinide-mediated chemopreventive effects oncolon cancer [J]. Cancer Letters, 2017, 388: 43-53.
[109] GAO S S, ZHOU J, LIU N, et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13 [J]. Journal of Molecular and Cellular Cardiology,2015, 85: 131-139.
[110] JANG H M, KANG G D, VAN LE T K, et al. 4-Methoxylonchocarpin attenuates inflammation by inhibiting lipopolysaccharide binding to Toll-like receptor of macrophages and M1 macrophage polarization[J]. International Immunopharmacology, 2017, 45:90-97.
[111] SHI H, ZHENG K, SU Z L, et al. Sinomenine enhances microglia M2 polarization and attenuates inflammatory injury in intracerebral hemorrhage [J].Journal of Neuroimmunology, 2016, 299: 28-34.
[112] FENG L L, SONG P P, ZHOU H, et al. Pentamethoxyflavanone regulates macrophage polarization and ameliorates sepsis in mice [J]. BiochemicalPharmacology, 2014, 89(1): 109-118.
[113] LU H, WU L F, LIU L P, et al. Quercetin ameliorateskidney injury and fibrosis by modulating M1/M2macrophage polarization [J]. Biochemical Pharmacology,2018, 154: 203-212.
[114] DONG J, ZHANG X, ZHANG L, et al. Quercetinreduces obesity-associated ATM infiltration andinflammation in mice: A mechanism includingAMPKα1/SIRT1 [J]. Journal of Lipid Research,2014, 55(3): 363-374.
[115] KIM Y J, PARK W. Anti-inflammatory effect ofquercetin on RAW264.7 mouse macrophages inducedwith polyinosinic-polycytidylic acid [J]. Molecules,2016, 21(4): 450.
[116] FU J, HUANG J J, LIN M, et al. Quercetin promotes diabetic wound healing via switching macrophages from M1 to M2 polarization [J]. Journal of Surgical Research, 2020, 246: 213-223.
[117] SU F, YI H, XU L, et al. Fluoxetine and S-citalopraminhibit M1 activation and promote M2 activation ofmicroglia in vitro [J]. Neuroscience, 2015, 294: 60-68.
[118] LKHAGVAA B, TANI K J, SATO K, et al. Bestatin,an inhibitor for aminopeptidases, modulates the productionof cytokines and chemokines by activatedmonocytes and macrophages [J]. Cytokine, 2008,44(3): 386-391.
[119] SOLANKI P, AMINOSHARIAE A, JIN G, etal. The effect of docosahexaenoic acid (DHA)on expression of IL-1β, IL-6, IL-8, and TNF-αin normal and lipopolysaccharide (LPS)-stimulatedmacrophages [J]. Quintessence International, 2013,44(6): 393.
[120] JUNG W K, LEE D Y, PARK C, et al. Cilostazol isanti-inflammatory in BV2 microglial cells by inactivating nuclear factor-kappaB and inhibiting mitogenactivated protein kinases [J]. British Journal of Pharmacology,2010, 159(6): 1274-1285.
[121] QIN C, FAN W H, LIU Q, et al. Fingolimod protectsagainst ischemic white matter damage by modulatingmicroglia toward M2 polarization via STAT3 pathway[J]. Stroke, 2017, 48(12): 3336-3346.
[122] URB′ASKOV′A P, ANDELOV′A A, TORSOV′A T, etal. Serratia marcescens as a cause of nosocomial infectionin an intensive care unit [J]. VnitrniLekarstvi,1978, 24(3): 254-259.
[123] MALEK N, POPIOLEK-BARCZYK K, MIKA J, etal. Anandamide, acting via CB2 receptors, alleviatesLPS-induced neuroinflammation in rat primary microglial cultures [J]. Neural Plasticity, 2015, 2015:130639.
[124] SU W J, ZHANG T, JIANG C L, et al. Clemastinealleviates depressive-like behavior through reversingthe imbalance of microglia-related pro-inflammatorystate in mouse hippocampus [J]. Frontiers in CellularNeuroscience, 2018, 12: 412.
[125] FENG Q, XU M, YU Y Y, et al. High-dose dexamethasoneor all-trans-retinoic acid restores thebalance of macrophages towards M2 in immunethrombocytopenia [J]. Journal of Thrombosis andHaemostasis, 2017, 15(9): 1845-1858.
[126] JANG C H, CHOI J H, BYUN M S, et al. Chloroquineinhibits production of TNF-α, IL-1β and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes [J]. Rheumatology,2006, 45(6): 703-710.
[127] SONG Y X, DOU H, GONG W, et al. Bis-Nnorgliovictin,a small-molecule compound from marinefungus, inhibits LPS-induced inflammation inmacrophages and improves survival in sepsis [J]. EuropeanJournal of Pharmacology, 2013, 705(1/2/3):49-60.
[128] ARYANPOURR, PASBAKHSH P, ZIBARA K, et al.Progesterone therapy induces an M1 to M2 switch inmicroglia phenotype and suppresses NLRP3 inflammasomein a cuprizone-induced demyelination mousemodel [J]. International Immunopharmacology, 2017,51: 131-139.
[129] LIU X, WEN S, YAN F, et al. Salidroside providesneuroprotection by modulating microglial polarizationafter cerebral ischemia [J]. Journal of Neuroinflammation,2018, 15(1): 39.
[130] HE L, MARNEROS A G. Doxycycline inhibits polarizationof macrophages to the proangiogenic M2-type and subsequent neovascularization [J]. The Journal of Biological Chemistry, 2014, 289(12): 8019-8028.
[131] ZHU Y S, LI X Q, CHEN J Q, et al. The pentacyclic triterpene Lupeol switches M1 macrophages to M2 and ameliorates experimental inflammatory bowel disease [J]. International Immunopharmacology,2016, 30: 74-84.
[132] ZHU W, JIN Z S, YU J B, et al. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype [J].International Immunopharmacology, 2016, 35: 119-126.
[133] KANG S, PARK S J, LEE A Y, et al. Ginsenoside Rg3 promotes inflammation resolution through M2 macrophage polarization [J]. Journal of Ginseng Research,2018, 42(1): 68-74.
[134] NEOG M K, SULTANA F, RASOOL M. Targeting RAW 264.7 macrophages (M1 type) with Withaferin-A decorated mannosylated liposomes induces repolarization via downregulation of NF-κB and controlled elevation of STAT-3 [J]. International Immunopharmacology,2018, 61: 64-73.
[135] WANG S X, WANG F J, YANG H Y, et al.Diosgenin glucoside provides neuroprotection by regulating microglial M1 polarization [J]. International Immunopharmacology, 2017, 50: 22-29.
[136] KO H J, LO C Y, WANG B J, et al. Theaflavin-3, 3’-digallate, a black tea polyphenol, attenuates adipocyte-activated inflammatory response of macrophage associated with the switch of M1/M2-like phenotype [J]. Journal of Functional Foods, 2014,11: 36-48.
[137] LUO X Q, LI A, YANG X, et al. Paeoniflorin exerts neuroprotective effects by modulating the M1/M2 subset polarization of microglia/macrophages in the hippocampal CA1 region of vascular dementia rats via cannabinoid receptor 2 [J]. Chinese Medicine,2018, 13: 14.
[138] AMANTEA D, CERTO M, PETRELLI F, et al.Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype [J]. Experimental Neurology, 2016,275: 116-125.
[139] PAN J, JIN J L, GE H M, et al. Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner [J]. Journal of Neuroinflammation, 2015, 12: 1-11.
[140] LIU X X, LI J, PENG X H, et al. Geraniin inhibits LPS-induced THP-1 macrophages switching to M1 phenotype via SOCS1/NF-κB pathway [J]. Inflammation,2016, 39(4): 1421-1433.
[141] PLASTIRA I, BERNHART E, GOERITZER M, et al. 1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype [J]. Journal of Neuroinflammation,2016, 13(1): 205.
[142] ZHANG X, ZHOU M, GUO Y, et al. 1,25-dihydroxyvitamin D3 promotes high glucose-induced M1 macrophage switching to M2 via the VDRPPARγ signaling pathway [J]. BioMed Research International,2015, 2015: 157834.
[143] FIORCARI S, MAFFEI R, AUDRITO V, et al. Ibrutinib modifies the function of monocyte/macrophage population in chronic lymphocytic leukemia [J]. Oncotarget,2016, 7(40): 65968-65981.
[144] ROSENSON R S, TANGNEY C C, CASEY L C.Inhibition of proinflammatory cytokine production by pravastatin [J]. The Lancet, 1999, 353(9157): 983-984.
[145] JUNG S, SIGLIENTI I, GRAUER O, et al. Induction of IL-10 in rat peritoneal macrophages and dendritic cells by glatiramer acetate [J]. Journal of Neuroimmunology, 2004, 148(1/2): 63-73.
[146] JIANG M, LIU X H, ZHANG D H, et al. Celastrol treatment protects against acute ischemic strokeinduced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization [J]. Journal of Neuroinflammation, 2018, 15(1):1-12.
[147] GARC′IA J E L, RODR′IGUEZ F M, L′OPEZ A J, et al. Effect of cyclosporin A on inflammatory cytokine production by human alveolar macrophages [J]. Respiratory Medicine, 1998, 92(5): 722-728.
[148] SCHILLING E, WEISS R, GRAHNERT A, et al.Molecular mechanism of LPS-induced TNF-α biosynthesis in polarized human macrophages [J]. Molecular Immunology, 2018, 93: 206-215.
[149] GENSEL J C, ZHANG B. Macrophage activation and its role in repair and pathology after spinal cord injury [J]. Brain Research, 2015, 1619: 1-11.
[150] HALSTEAD E S, UMSTEAD T M, DAVIES M L,et al. GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization [J]. Respiratory Research, 2018, 19(1): 3.
[151] MANTOVANI A, VECCHI A, ALLAVENA P.Pharmacological modulation of monocytes and macrophages [J]. Current Opinion in Pharmacology,2014, 17: 38-44.
[152] HAMZEI TAJ S, LE BLON D, HOORNAERT C,et al. Targeted intracerebral delivery of the antiinflammatory cytokine IL13 promotes alternative activation of both microglia and macrophages after stroke [J]. Journal of Neuroinflammation, 2018,15(1): 174.
[153] FERNANDO M R, REYES J L, IANNUZZI J, et al. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages [J]. PLoS One, 2014, 9(4): e94188.
[154] KUROWSKA-STOLARSKA M, STOLARSKI B,KEWIN P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation [J]. Journal of Immunology,2009, 183(10): 6469-6477.
[155] KOBORI T, HAMASAKI S, KITAURA A, et al.Interleukin-18 amplifies macrophage polarization and morphological alteration, leading to excessive angiogenesis [J]. Frontiers in Immunology, 2018, 9: 334.
[156] LUO B,WANG J, LIU Z, et al. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution [J]. Nature Communications, 2016, 7: 12177.