[1] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005: 886-893.
[2] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model [C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA:IEEE, 2008: 1-8.
[3] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6):16880617.
[4] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI,USA: IEEE, 2017: 7263-7271.
[5] WANG H Y, YAN Y X, HUA J, et al. Pedestrian recognition in multi-camera networks using multilevel important salient feature and multicategory incremental learning [J]. Pattern Recognition, 2017, 67: 340-352.
[6] ZHOU Z, WANG Y, TEOH E K. A framework for semantic people description in multi-camera surveillance systems [J]. Image and Vision Computing, 2016, 46:29-46.
[7] ZHENG L, HUANG Y J, LU H C, et al.Pose invariant embedding for deep person reidentification[EB/OL]. (2017-01-27) [2018-01-15].https://arxiv.org/abs/1701.07732v1.
[8] ZHAO H Y, TIAN M Q, SUN S Y, et al. Spindle net: Person re-identification with human body region guided feature decomposition and fusion [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 1077-1085.
[9] YU H X, WU A C, ZHENG W S. Cross-view asymmetric metric learning for unsupervised person reidentification [C]//2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017:994-1002.
[10] SENNA P, DRUMMOND I N, BASTOS G S.Real-time ensemble-based tracker with Kalman filter[C]//2017 30th SIBGRAPI Conference on Graphics,Patterns and Images (SIBGRAPI). Niter′oi, Brazil:IEEE, 2017: 338-344.
[11] CAI Z Q, HU S G, SHI Y K, et al. Multiple human tracking based on distributed collaborative cameras[J]. Multimedia Tools and Applications, 2017, 76(2):1941-1957.
[12] HUANG W X, HU R M, LIANG C, et al. Camera network based person re-identification by leveraging spatial-temporal constraint and multiple cameras relations [C]//International Conference on Multimedia Modeling. Switzerland: Springer, 2016: 174-186.
[13] LI Q, SUN Z X, CHEN S C, et al. Dynamic node selection in camera networks based on approximate reinforcement learning [J]. Multimedia Tools and Applications,2016, 75(24): 17393-17419.
[14] BHUVANA V P, SCHRANZ M, REGAZZONI C S, et al. Multi-camera object tracking using surprisal observations in visual sensor networks [J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016: 50.
[15] XIAO J, LIU Z, YANG H, et al. The invariant featuresbased target tracking across multiple cameras [J]. Multimedia Tools and Applications, 2017, 76(10): 12165-12179.
[16] YOO H, KIM K, BYEON M, et al. Online scheme for multiple camera multiple target tracking based on multiple hypothesis tracking [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017,27(3): 454-469.
[17] WAN J Q, LI A C. Multiple people tracking using camera networks with overlapping views [J]. International Journal of Distributed Sensor Networks, 2015, 11(1):591067.
[18] MOTIIAN S, SIYAHJANI F, ALMOHSEN R, et al.Online human interaction detection and recognition with multiple cameras [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(3):649-663.
[19] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
[20] VOJIR T, NOSKOVA J, MATAS J. Robust scaleadaptive mean-shift for tracking [J]. Pattern Recognition Letters, 2014, 49: 250-258.
[21] SENNA P, DRUMMOND I N, BASTOS G S.Real-time ensemble-based tracker with Kalman filter[C]//201730th SIBGRAPI Conference on Graphics,Patterns and Images (SIBGRAPI). Niter′oi, Brazil:IEEE, 2017: 338-344.
[22] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification [C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego, USA: IEEE, 2005: 539-546.
[23] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE,2016: 1401-1409.
[24] COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
[25] HENRIQUES J F, CASEIRO R, MARTINS P, et al.High-speed tracking with kernelized correlation filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
[26] XIEWF, PU F L, CHENG Y. Cooperation of multiple non-overlapping surveillance videos for mobile target tracking [J]. Computer Engineering and Design, 2016,37(3): 809-813.
[27] XIAO J, LIU Z, YANG H, et al. The invariant featuresbased target tracking across multiple cameras [J]. Multimedia Tools and Applications, 2017, 76(10): 12165-12179.
[28] DU W, PIATER J. Multi-camera people tracking by collaborative particle filters and principal axis-based integration [C]//8th Asian Conference on Computer Vision. Tokyo, Japan: Springer, 2007: 365-374.
[29] LIN D T, HUANG K Y. Collaborative pedestrian tracking and data fusion with multiple cameras [J].IEEE Transactions on Information Forensics and Security,2011, 6(4): 1432-1444.
[30] BLACK J, ELLIS T, ROSIN P. Multi view image surveillance and tracking [C]// Proceedings Workshop on Motion and Video Computing (MOTION 2002).Orlando, FL, USA: IEEE, 2002: 169-174.
[31] DANELLJAN M, H¨AGER G, KHAN F S, et al.Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference. Nottingham,UK: BMVA Press, 2014: 1-9.
[32] DANELLJAN M, KHAN F S, FELSBERG M, et al.Adaptive color attributes for real-time visual tracking [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA:IEEE, 2014: 1090-1097.
[33] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.