[1] DHAMI N K, REDDY M S, MUKHERJEE A. Significantindicators for biomineralisation in sand of varyinggrain sizes [J]. Construction and Building Materials,2016, 104: 198-207.
[2] MALEKI M, EBRAHIMI S, ASADZADEH F, et al.Performance of microbial-induced carbonate precipitationon wind erosion control of sandy soil [J]. InternationalJournal of Environmental Science and Technology,2016, 13(3): 937-944.
[3] LIANG J M, GUO Z Y, DENG L J, et al. Maturefine tailings consolidation through microbial inducedcalcium carbonate precipitation [J]. Canadian Journalof Civil Engineering, 2015, 42(11): 975-978.
[4] SALIFU E, MACLACHLAN E, IYER K R, et al. Applicationof microbially induced calcite precipitationin erosion mitigation and stabilisation of sandy soilforeshore slopes: A preliminary investigation [J]. EngineeringGeology, 2016, 201(4): 96-105.
[5] CANAKCI H, SIDIK W, KILIC I H. Effect of bacterialcalcium carbonate precipitation on compressibilityand shear strength of organic soil [J]. Soils and Foundations,2015, 55(5): 1211-1221.
[6] UMAR M, KASSIM K A, CHIET K T P. Biologicalprocess of soil improvement in civil engineering: A review[J]. Journal of Rock Mechanics and GeotechnicalEngineering, 2016, 8(5): 767-774.
[7] TANG Y, XU G B, LIAN J J, et al. Effect of temperatureand humidity on the adhesion strength anddamage mechanism of shotcrete-surrounded rock [J].Construction and Building Materials, 2016, 124: 1109-1119.
[8] DUFOUR N, WONG H, ARSON C, et al. A thermodynamicallyconsistent framework for saturated viscoplasticrock-materials subject to damage [J]. MechanicsResearch Communications, 2012, 45: 15-21.
[9] SHEN B T, KIM H M, PARK E S, et al. Multiregionboundary element analysis for coupled thermalfracturingprocesses in geomaterials [J]. Rock Mechanicsand Rock Engineering, 2013, 46(1): 135-151.
[10] RINNE M, SHEN B T, BACKERS T. Modelling fracturepropagation and failure in a rock pillar under mechanicaland thermal loadings [J]. Journal of Rock Mechaicsand Geotechnical Engineering, 2013, 5(1): 73-83.
[11] KOYAMA T, CHIJIMATSU M, SHIMIZU H, etal. Numerical modeling for the coupled thermomechanicalprocesses and spalling phenomena in ¨Asp¨opillar stability experiment (APSE) [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(1):58-72.
[12] TANG Y, XU G B, QU C L, et al. Damage simulationof a random aggregate model induced by microwaveunder different discontinuous ratios and exposuretimes [J]. Advances in Materials Science andEngineering, 2016, 2016: 5690272.
[13] HUANG K, XU T, LI G F, et al. The feasibility ofDEM to analyze the temperature field of asphalt mixture[J]. Construction and Building Materials, 2016,106: 592-599.
[14] LIU H Y, ROQUETE M, Kou S Q, et al. Characterizationof rock heterogeneity and numerical verification[J]. Engineering Geology, 2004, 72(1): 89-119.
[15] PAN P Z, XIA T F. Numerical study on coupledthermo-mechanical processes in ¨Asp¨o pillar stabilityexperiment [J]. Journal of Rock Mechanics andGeotechnical Engineering, 2013, 5(2): 136-144.
[16] WALSH S D C, LOMOV I N. Micromechanical modelingof thermal spallation in granitic rock [J]. InternationalJournal of Heat and Mass Transfer, 2013, 65(5):366-373.
[17] JING L. A review of techniques, advances and outstandingissues in numerical modelling for rock mechanicsand rock engineering [J]. International Journalof Rock Mechanics and Mining Sciences, 2003, 40(3):283-353.
[18] TERREROS I, IORDANOFF I, CHARLES J L. Simulationof continuum heat conduction using DEMdomains [J]. Computational Materials Science, 2013,69(1): 46-52.
[19] WANNE T S, YOUNG R P. Bonded-particle modelingof thermally fractured granite [J]. InternationalJournal of Rock Mechanics and Mining Science, 2008,45(5): 789-799.
[20] HAHN M, SCHWARZ M, KR¨OPLIN B H, et al. Discreteelement method for the thermal field: Proof ofconcept and determination of the material parameters[J]. Computational Materials Science, 2011, 50(10):2771-2784.
[21] VAN LEW J T, YING A, ABDOU M. A discrete elementmethod study on the evolution of thermomechanicsof a pebble bed experiencing pebble failure [J].Fusion Engineering and Design, 2014, 89(7/8): 1151-1157.
[22] PENNEC F, ALZINA A, TESSIER-DOYEN N, etal. A combined finite-discrete element method forcalculating the effective thermal conductivity of bioaggregatesbased materials [J]. International Journalof Heat and Mass Transfer, 2013, 60(1): 274-283.
[23] TSORY T, BEN-JACOB N, BROSH T, et al. ThermalDEM-CFD modeling and simulation of heat transferthrough packed bed [J]. Powder Technology, 2013,244(4): 52-60.
[24] RICKELT S, SUDBROCK F,WIRTZ S, et al. CoupledDEM/CFD simulation of heat transfer in a genericgrate system agitated by bars [J]. Powder Technology,2013, 249(11): 360-372.
[25] GUI N, YAN J, XU W K, et al. DEM simulation andanalysis of particle mixing and heat conduction in arotating drum [J]. Chemical Engineering Science, 2013,97(7): 225-234.
[26] KOMOSSA H, WIRTZ S, SCHERER V, et al.Transversal bed motion in rotating drums using sphericalparticles: Comparison of experiments with DEMsimulations [J]. Powder Technology, 2014, 264(3): 96-104.
[27] GARBOCZI E J, BENTZ D P. Multiscale analytical/numerical theory of the diffusivity of concrete [J].Advanced Cement Based Materials, 1998, 8(2): 77-88.
[28] XU G B, TANG Y, LIAN J J, et al. Mineralizationprocess of biocemented sand and impact of bacteriaand calcium ions concentrations on crystal morphology[J]. Advances in Materials Science and Engineering,2017, 2017: 5301385.
[29] TANG Y, LIAN J J, XU G B, et al. Effect of cementationon calcium carbonate precipitation of loose sandresulting from microbial treatment [J]. Transactions ofTianjin University, 2017, 23(6): 547-554.
[30] TANG Y, XU G B, LIAN J J, et al. Research on simulationanalysis method of microbial cemented sandbased on discrete element method [J]. Advances in MaterialsScience and Engineering, 2019, 2019: 7173414.
[31] FENG K, MONTOYA B M, EVANS T M. Discreteelement method simulations of bio-cemented sands [J].Computers and Geotechnics, 2017, 85: 139-150.
[32] BARDET J P. Observations on the effects of particlerotations on the failure of idealized granular materials[J]. Mechanics of Materials, 1994, 18(94): 159-182.
[33] POTYONDY D O, CUNDALL P A. A bonded-particlemodel for rock [J]. International Journal of Rock Mechanicsand Mining Sciences, 2004, 41(8): 1329-1364.
[34] MEISELS R, TOIFL M, HARTLIEB P, et al. Microwavepropagation and absorption and its thermomechanicalconsequences in heterogeneous rocks [J].International Journal of Mineral Processing, 2015,135(3): 40-51.
[35] TANG Y, XU G B, YAN Y, et al. Thermal crackinganalysis of microbial cemented sand under variousstrains based on the DEM [J]. Advances in MaterialsScience and Engineering, 2018, 2018: 7528746.
[36] WANNE T S, YOUNG R P. Bonded-particle modelingof thermally fractured granite [J]. InternationalJournal of Rock Mechanics and Mining Sciences, 2008,45(5): 789-799.
[37] YUAN M D, XIAO M, YANG G H. Crack state ofChangsha arch dam and analysis on the effects of coldwave [J]. Journal of Hydroelectric Engineering, 2012,31(3): 175-181 (in Chinese).
[38] ZHOU W, LI S R, LIU X H, et al. Simulation of concretespecimens temperature cracks using particle flowcode [J]. Journal of Hydroelectric Engineering, 2013,32(3): 187-193 (in Chinese).
[39] WANG Z L, LI Y C, WANG J G. A damage-softeningstatistical constitutive model considering rock residualstrength [J]. Computers & Geosciences, 2007, 33(1):1-9.