Dynamic Response Analysis of a Multi-Column Tension-Leg-Type Floating Wind Turbine Under Combined Wind and Wave Loading

Expand
  • (State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China)

Online published: 2016-03-21

Abstract

Floating wind turbines (FWTs) are subjected to combined aerodynamic and hydrodynamic loads varying both in time and amplitude. In this study, a multi-column tension-leg-type FWT (i.e., WindStar TLP system) is investigated for its global performance under normal operating conditions and when parked. The selected variables are analysed using a fully coupled aero-hydro-servo-elastic time domain simulation tool FAST. Three different loading scenarios (wind only, wave only and both combined) are examined to identify the dominant load influencing each response. The key response variables are obtained and compared with those for an NREL 5MW baseline wind turbine installed on land. The results should aid the detailed design of the WindStar TLP system.

Cite this article

ZHAO Yongsheng (赵永生), YANG Jianmin (杨建民), HE Yanping* (何炎平), GU Mintong (顾敏童) . Dynamic Response Analysis of a Multi-Column Tension-Leg-Type Floating Wind Turbine Under Combined Wind and Wave Loading[J]. Journal of Shanghai Jiaotong University(Science), 2016 , 21(1) : 103 -111 . DOI: 10.1007/s12204-015-1689-5

References

[1] BTM Consult APS. International wind energy developmentworld market update 2009, forecast 2010—2014 [R]. Denmark: BTM Consult APS, 2010. [2] American Bureau of Shipping. Guidance notes onglobal performance analysis for floating offshore windturbine [R]. Houston, USA: American Bureau of Shipping,2013. [3] JONKMAN J M. Dynamics of offshore floating windturbines-model development and verification [J]. WindEnergy, 2009, 12: 459-492. [4] JONKMAN J M, MATHA D. Dynamics of offshorefloating wind turbines-analysis of three concepts [J].Wind Energy, 2011, 14: 557-569. [5] KARIMIRAD M, MOAN T. Wave- and windinduceddynamic response of a spar-type offshore windturbine [J]. Journal of Waterway, Port, Coastal, andOcean Engineering, 2012, 138: 9-20. [6] ZHAOY S, YANG JM, HE Y P. Preliminary designof a multi-column TLP foundation for a 5-MWoffshorewind turbine [J]. Energies, 2012, 5: 3874-3891. [7] JONKMAN J M, BUHL JR M L. FAST user’s guide[R]. Colorado, USA: National Renewable Energy Laboratory,2005. [8] JONKMAN J M, BUTTERFIELD S, MUSIAL W,et al. Definition of a 5-MW reference wind turbine foroffshore system development [R]. Colorado, USA: NationalRenewable Energy Laboratory, 2009. [9] International Electrotechnical Committee. Wind turbinegenerator systems. Part 1. Design requirements[R]. Geneva, Switzerland: International ElectrotechnicalCommission, 2005. [10] International Electrotechnical Commission. Wind turbines.Part 3. Design requirements for offshore windturbines [R]. Geneva, Switzerland: International ElectrotechnicalCommission, 2009. [11] MANWELL J F, MCGOWAN J G, ROGERS A L.Wind energy explained: Theory, design and application[M]. West Sussex, UK: John Wiley & Sons Ltd,2012. [12] BURTON T, SHARPE D, JENKINS N, et al.Windenergy handbook [M]. New York, USA: John Wiley &Sons Ltd, 2011. [13] MORIARTY P J, HANSEN A C. AeroDyn theorymanual [R]. Colorado, USA: National Renewable EnergyLaboratory, 2005. [14] JONKMAN J M. Dynamics modeling and loads analysisof an offshore floating wind turbine [R]. Colorado,USA: National Renewable Energy Laboratory, 2007. [15] Det Norske Veritas. Wadam theory manual [R]. H?vik,Norway: Det Norske Veritas, 2008. [16] AHMAD S, ISLAM N, ALI A. Wind-induced responseof a tension leg platform [J]. Journal of WindEngineering and Industrial Aerodynamics, 1997, 72:225-240. [17] JONKMAN B J, BUHL JR M L. TurbSim user’sguide [R]. Colorado, USA: National Renewable EnergyLaboratory, 2007.
Options
Outlines

/