Articles

Composition-Dependent Mechanical and Thermal Transport Properties of Carbon/Silicon Core/Shell Nanowires

Expand
  • (a. Department of Astronautical Science and Mechanics; b. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Online published: 2012-12-30

Abstract

Abstract: Molecular dynamics (MD) simulations are performed to study the composition-dependent elastic modulus and thermal conductivity for carbon/silicon core/shell nanowires (NWs). For each concerned carbon/silicon core/shell NW with a specified diameter, it is found that elastic modulus is reduced with a linear dependence on cross-sectional area ratio. The fact matches well with the results of theoretical model. Analysis based on the cross-sectional stress distribution indicates that the core region of core/shell NW is capable of functioning as a mechanical support. On the other hand, thermal conductivity also relies on the cross-sectional area ratio of amorphous silicon shell. The core/shell interface plays a considerable influence on the thermal transport property. The decreasing rate of thermal conductivity is gradually decreased as the composition of amorphous silicon shell increases. In addition, by calculating the phonon density of state, we demonstrate that the reduction in thermal conductivity of the core/shell NW stems from the increase of the low frequency modes and the depression of high-frequency nonpropagating diffusion modes. These results provide an effective way to modify the properties of core/shell NWs for related application.

Cite this article

JING Yu-hanga,b* (荆宇航), YU Kai-pinga (于开平), QIN Xiana (覃弦), SHEN Junb* (沈军) . Composition-Dependent Mechanical and Thermal Transport Properties of Carbon/Silicon Core/Shell Nanowires[J]. Journal of Shanghai Jiaotong University(Science), 2012 , 17(6) : 743 -747 . DOI: 10.1007/s12204-012-1357-y

References

[1] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowire [J]. Science, 1998, 279(5348): 208-211.
[2] Lieber C M. Nanowire superlattices [J]. Nano Letters, 2002, 2(2): 81-82.
[3] Lauhon L J, Gudiksen M S, Wang D, et al. Epitaxial core-shell and core-multishell nanowire heterostructures [J]. Nature, 2002, 420: 57-61.
[4] Gudiksen M S, Lauhon L J, Wang J S, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics [J]. Nature, 2002, 415: 617-620.
[5] Wang K, Chen J J, Zeng Z M, et al. Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays [J]. Applied Physics Letters, 2010, 96(12): 123105.1-4.
[6] Wang J Z, Du N, Zhang H, et al. Cu-Si1-xGex core shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries [J]. Journal of Power Sources, 2012, 208: 434-439.
[7] Tchernycheva M, Rigutti L, Jacopin G, et al. Photovoltaic properties of GaAsP core-shell nanowires on Si(001) substrate [J]. Nanotechnology, 2012, 23: 265402.1-8.
[8] Kim B K, Kim J J, Lee J, et al. Top-gated field-effect transistor and rectifying diode operation of core-shell structured GaP nanowire devices [J]. Physical Review B, 2005, 71(15): 153313.1-4.
[9] Ghalamestani S G, Heurlin M, Wernersson L E, et al. Growth of InAs/InP core-shell nanowires with various pure crystal structures [J]. Nanotechnology, 2012, 23(28): 285601.1-10.
[10] Chen H T, Xu J, Chen P C, et al. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage [J]. ACS Nano, 2011, 5(10): 8383-8390.
[11] Goldthorpe I A, Marshall A F, Mclntyre P C. Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays [J]. Nano Letters, 2008, 8(11): 4081-4086.
[12] Cui L F, Ruffo R, Chan C K, et al. Crystallineamorphous core-shell silicon nanowire for high capacity and high current battery electrodes [J]. Nano Letters, 2009, 9(1): 491-495.
[13] Cui L F, Yang Y, Hsu C M, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries [J]. Nano Letters, 2009, 9(9): 3370-3374.
[14] Jing Y H, Meng Q Y. Molecular dynamics simulations of the mechanical properties of crystalline/amorphous silicon core/shell nanowires [J]. Physica B, 2010, 405(10): 2413-2417.
[15] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19.
[16] Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Physical Review B, 1992, 46(5): 2727-2742.
[17] Erhart P, Albe K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J]. Physical Review B, 2005, 71(3): 035211.1-14.
[18] Jing Y H, Aluru N R. Atomistic simulations on the mechanical properties of a silicon nanofilm covered with grapheme [J]. Computational Materials Science, 2011, 50(10): 3063-3066.
[19] M¨uller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity [J]. The Journal of Chemical Physics, 1997, 106(14): 6082-6085.
[20] Hoover W G. Canonical dynamics: Equilibrium phase-space distributions [J]. Physical Review A, 1985, 31(3): 1695-1697.
[21] Yi T, Li L, Kim C J. Microscale material testing of single crystalline silicon: Process effects on surface morphology and tensile strength [J]. Sensors and Actuators, 2000, 83: 172-178.
[22] Tabib-Azar M, Nassirou M, Wang R, et al. Mechanical properties of self-welded silicon nanobridges [J]. Applied Physics Letters, 2005, 87(11): 113102.1-3.
[23] Wang J, Kulkarni A J, Ke F J, et al. Novel mechanical behavior of ZnO nanorods [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197: 3182-3189.
[24] Donadio D, Galli G. Atomistic simulations of heat transport in silicon nanowires [J]. Physical Review Letters, 2009, 102(19): 195901.1-4.
[25] Donadio D, Galli G. Temperature dependence of the thermal conductivity of thin silicon nanowires [J]. Nano Letters, 2010, 10: 847-851.
[26] Hu M, Zhang X L, Giapis K P, et al. Thermal conductivity reduction in core-shell nanowires [J]. Physical Review B, 2011, 84(8): 085442.1-9.
[27] Hu M, Giapis K P, Goicochea J V, et al. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires [J]. Nano Letters, 2010, 11: 618-623.
[28] Ren C L, Zhang W, Xu Z J, et al. Thermal conductivity of single-walled carbon nanotubes under axial stress [J]. The Journal of Physical Chemistry C, 2010, 114(13): 5786-5791.
Options
Outlines

/