Articles

An Improved Cyclostationary Feature Detection Based on  the Selection of
Optimal Parameter in Cognitive Radios

Expand
  • (1. Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200240, China;2. ARCON Corporation, Waltham 02451, USA)

Received date: 2010-04-13

  Online published: 2012-03-21

Abstract


Abstract: Spectrum sensing is an important part of
cognitive radio systems to find spectrum hole for transmission which
enables cognitive radio systems coexist with the authorized radio
systems without harmful interference. In this paper, an improved
cyclostationary feature detection method is proposed to reduce
computational complexity without loss of good performance based on
the optimal parameter selection strategy for choosing detection
parameters of cyclic frequency and lag. Taking binary phase shift
keying (BPSK) and quadrature phase shift keying (QPSK) signals as
examples, the theoretical analyses are presented for choosing the
optimal parameters. Simulation results are given to certify the
correctness of the proposed parameter selection strategy and show
the performance of the proposed method.

Cite this article

SHEN Da (沈 达), HE Di (何 迪), LI Wen-hua (李文化), LIN Ying-pei (林英沛) . An Improved Cyclostationary Feature Detection Based on  the Selection of
Optimal Parameter in Cognitive Radios[J]. Journal of Shanghai Jiaotong University(Science), 2012
, 17(1) : 1 -007 . DOI: 10.1007/s12204-012-1222-z

References

1   Haykin S. Cognitive radio: Brain-empowered wireless communications [J].   IEEE Journal on Selected Areas in Communications, 2005,  23(2): 201-220.
2   Akyildiz I F, Lee W Y, Vuran M C, et al. Next generation dynamic spectrum access cognitive radio wireless networks: A survey [J].   Computer Networks, 2006,  50(13): 2127-2159.
3   Cabric D, Mishra S M, Brodersen R W. Implementation

issues in spectrum sensing for cognitive radios [C]// 

Proceedings of the 38th Asiomar Conference on Signals, Systems and

Computers. Monterey, Canada: IEEE, 2004: 772-776.
4   Urkowitz H. Energy detection of unknown deterministic signals [J].   Proceedings of the IEEE, 1967,  55(4): 523-531.
5   Tandra R, Sahai A. SNR walls for signal detection [J].   IEEE Journal on Selected Topics in Signal Processing, 2008,  2(1): 4-17.
6   Wiliam A G. Exploitation of spectral redundancy in cyclostationary signals [J].   IEEE Signal Processing Magazine, 1991,  8(2): 14-36.
7   Dandawate A V, Giannakis G B. Statistical tests for presence of cyclostationarity [J].   IEEE Transactions on Signal Processing, 1994,  42(9): 2355-2369.
8   Sutton P D, Nolan K E, Doyle L E. Cyclostationary signatures in practical cognitive radio applications [J].   IEEE Journal on Selected Areas in Communications, 2008,  26(1): 13-24.
9   Choi K W, Jeon W S, Jeong D G. Sequential detection of cyclostationary signal for cognitive radio systems [J].   IEEE Transactions on Wireless Communications, 2009,  8(9): 4480-4485.
10   Lunden J, Koivunen V, Huttunen A, et al. Collaborative cyclostationary spectrum sensing for cognitive radio systems [J].   IEEE Transactions on Signal Processing, 2009,  57(11): 4182-4195.
Options
Outlines

/