Articles

Solving the Euclidean Steiner Minimum Tree Using    Cellular
Stochastic Diffusion Search Algorithm

Expand
  • (1. Institute of Image Processing and Pattern
    Recognition, Henan University, Kaifeng 475001, Henan, China;
    2. School of Management, University of Shanghai for Science and
    Technology, Shanghai 200093, China)

Received date: 2010-09-08

  Online published: 2012-01-12

Abstract

 The Euclidean Steiner minimum tree
problem is a classical NP-hard combinatorial optimization problem.
Because of the intrinsic characteristic of the hard computability,
this problem cannot be solved accurately by efficient algorithms up
to now. Due to the extensive applications in real world, it is quite
important to find some heuristics for it. The stochastic diffusion
search algorithm is a newly population-based algorithm whose
operating mechanism is quite different from ordinary intelligent
algorithms, so this algorithm has its own advantage in solving some
optimization problems. This paper has carefully studied the
stochastic diffusion search algorithm and designed a cellular
automata stochastic diffusion search algorithm for the Euclidean
Steiner minimum tree problem which has low time complexity.
Practical results show that the proposed algorithm can find approving results
in short time even for the large scale size, while exact algorithms need to cost several hours.

Cite this article

ZHANG Jin (张 瑾), ZHAO Ya-liang (赵雅靓), MA Liang (马 良) . Solving the Euclidean Steiner Minimum Tree Using    Cellular
Stochastic Diffusion Search Algorithm[J]. Journal of Shanghai Jiaotong University(Science), 2011
, 16(6) : 734 -741 . DOI: 10.1007/s12204-011-1218-0

References

1  Gilbert E N, Pollak H O.   Steiner minimal trees [J].  SIAM

Journal on Applied Mathematics, 1968, 16  (1): 1-29.

    2  Maculan N, Michelon P, Xavier A E.   The   Euclidean 

Steiner tree problem in      Rn  : A mathematical programming

formulation [J].  Annals of Operations Research, 2000,    

96  (1-4): 209-220.

    3  Du D Z, Hwang F K.   The Steiner ratio conjecture of Gilbert and

Pollak is true [J].  Proceedings of the National Academy of

Sciences of the United States of America, 1990, 87  (23):

9464-9466.

    4  Bishop J M, Torr P.   Stochastic search network [C]//

Proceedings of the 1st IEE Conference on Artificial Neural

Networks. London, UK: IEE, 1989: 329-331.

    5  de Meyer K. Foundations of stochastic diffusion search [D].

Berkshire, UK: Department of Cybernetics, University of Reading,

2004.

    6  de Meyer K, Nasuto S J, Bishop M.   Stochastic diffusion

search: Partial function evaluation in swarm   intelligence 

dynamic optimisation [C]// Stigmergic Optimization, Studies in

Computational Intelligence.   Cambridge, USA: Springer-Verlag,

2006: 185-207.

    7  Wang   Li-fang, Zeng   Jian-chao. A survey of stochastic

diffusion search [J].  Pattern Recognition and Artificial

Intelligence, 2008, 21  (3): 351-356 (in Chinese).

    8  Zhu   Gang, Ma   Liang. Solving TSP by cellular ant

algorithm [J].  Computer Engineering and Applications, 2007,

     43  (10): 79-80 (in Chinese).

    9  Zhu   Gang, Ma   Liang. Cellular ant algorithm for function

optimization [J].  Journal of Systems Engineering, 2007,    

22  (3): 305-308 (in Chinese).

    10  Jin   Hui-min, Ma   Liang, Wang   Zhou-mian. Fast

algorithms for finding optimal Euclidean Steiner tree [J].

Application Research of Computers, 2006, 23  (5): 60-62 (in

Chinese).

    11  Jin   Hui-min, Ma   Liang, Wang   Zhou-mian. Intelligent

optimization algorithms for Euclidean Steiner minimum tree problem

[J].  Computer Engineering, 2006, 32  (10): 201-203 (in Chinese).
Options
Outlines

/