[1] ZHANG X, CHEN M Y, WANG L, et al. Fault-tolerant consensus for a network of multi-agent systems with actuator faults [J]. Journal of Shanghai Jiao Tong University, 2015, 49(6): 806-811 (in Chinese).
[2] OH K K, PARK M C, AHN H S. A survey of multi-agent formation control [J]. Automatica, 2015, 53: 424-440.
[3] THUNBERG J, GONCALVES J, HU X M. Consensus and formation control on SE(3) for switching topologies [J]. Automatica, 2016, 66: 109-121.
[4] DASGUPTA P. A multiagent swarming system for distributed automatic target recognition using unmanned aerial vehicles [J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2008, 38(3): 549-563.
[5] SHI H, WANG L, CHU T G. Swarming behavior of multi-agent systems [J]. Journal of Control Theory and Applications, 2004, 2(4): 313-318.
[6] QIN J H, FU W M, GAO H J, et al. Distributed kmeans algorithm and fuzzy c-means algorithm for sensor networks based on multiagent consensus theory [J]. IEEE Transactions on Cybernetics, 2017, 47(3): 772-783.
[7] LI X G, HU X Y, ZHANG R Q, et al. Routing protocol design for underwater optical wireless sensor networks: A multiagent reinforcement learning approach [J]. IEEE Internet of Things Journal, 2020, 7(10): 9805-9818.
[8] PUTRA S A, TRILAKSONO B R, RIYANSYAH M, et al. Intelligent sensing in multiagent-based wireless sensor network for bridge condition monitoring system [J]. IEEE Internet of Things Journal, 2019, 6(3): 5397-5410.
[9] YEUNG C S K, POON A S Y, WU F F. Game theoretical multi-agent modelling of coalition formation for multilateral trades [J]. IEEE Transactions on Power Systems, 1999, 14(3): 929-934.
[10] LIN Z Y, WANG L L, HAN Z M, et al. Distributed formation control of multi-agent systems using complex Laplacian [J]. IEEE Transactions on Automatic Control, 2014, 59(7): 1765-1777.
[11] QIU X F, ZHANG Y X, LI K Z. Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control [J]. Chinese Physics B, 2019, 28(5): 050501.
[12] HONG Y G, HU J P, GAO L X. Tracking control for multi-agent consensus with an active leader and variable topology [J]. Automatica, 2006, 42(7): 1177-1182.
[13] LIN P, JIA Y M. Multi-agent consensus with diverse time-delays and jointly-connected topologies [J]. Automatica, 2011, 47(4): 848-856.
[14] REN W, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies [J]. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661.
[15] BLONDEL V D, HENDRICKX J M, TSITSIKLIS J N. On Krause’s multi-agent consensus model with state-dependent connectivity [J]. IEEE Transactions on Automatic Control, 2009, 54(11): 2586-2597.
[16] WANG F Y, YANG H Y, LIU Z X, et al. Containment control of leader-following multi-agent systems with jointly-connected topologies and time-varying delays [J]. Neurocomputing, 2017, 260: 341-348.
[17] HONG Y G, CHEN G R, BUSHNELL L. Distributed observers design for leader-following control of multiagent networks [J]. Automatica, 2008, 44(3): 846-850.
[18] LI X W, SUN Z Y, TANG Y, et al. Adaptive eventtriggered consensus of multiagent systems on directed graphs [J]. IEEE Transactions on Automatic Control, 2021, 66(4): 1670-1685.
[19] GARCIA E, CAO Y C, CASBEER D W. Decentralized event-triggered consensus with general linear dynamics [J]. Automatica, 2014, 50(10): 2633-2640.
[20] YU M, YAN C, XIE D M, et al. Event-triggered tracking consensus with packet losses and time-varying delays [J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(2): 165-173.
[21] BORGERS D P, HEEMELS W P M H. Eventseparation properties of event-triggered control systems [J]. IEEE Transactions on Automatic Control, 2014, 59(10): 2644-2656.
[22] WANG L, XIAO F. Finite-time consensus problems for networks of dynamic agents [J]. IEEE Transactions on Automatic Control, 2010, 55(4): 950-955.
[23] LI S H, DU H B, LIN X Z. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics [J]. Automatica, 2011, 47(8): 1706-1712.
[24] CAO Y C, REN W. Finite-time consensus for multiagent networks with unknown inherent nonlinear dynamics [J]. Automatica, 2014, 50(10): 2648-2656.
[25] LIU X Y, LAM J, YU W W, et al. Finite-time consensus of multiagent systems with a switching protocol [J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 853-862.
[26] LI C Y, QU Z H. Distributed finite-time consensus of nonlinear systems under switching topologies [J]. Automatica, 2014, 50(6): 1626-1631.
[27] ZOU W C, SHI P, XIANG Z R, et al. Finite-time consensus of second-order switched nonlinear multi-agent systems [J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1757-1762.
[28] DU H B, WEN G H, WU D, et al. Distributed fixedtime consensus for nonlinear heterogeneous multiagent systems [J]. Automatica, 2020, 113: 108797.
[29] HONG H F, YU W W, WEN G H, et al. Distributed robust fixed-time consensus for nonlinear and disturbed multiagent systems [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(7): 1464-1473.
[30] HAN J, WANG C H, YI G X. Cooperative control of UAV based on multi-agent system [C]//2013 IEEE 8th Conference on Industrial Electronics and Applications. Melbourne: IEEE, 2013: 96-101.
[31] LIU B, ZHANG H T, WU Y, et al. Distributed consensus control of multi-USV systems [M]//International conference on intelligent robotics and applications. Cham: Springer, 2017: 628-635.
[32] GAO C, WANG Z D, HE X, et al. On consensus of second-order multiagent systems with actuator saturations: A generalized-nyquist-criterion-based approach [J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9048-9058.
[33] LIU T Q, LIU M Q, WEN G H, et al. Consensus of linear MIMO multiagent systems: Appointedtime reduced-order observer-based protocols [J]. IEEE Transactions on Cybernetics, 2022, 52(10): 10604-10610.
[34] WU Z M, WU Y F, YUE D. Distributed adaptive neural consensus tracking control of MIMO stochastic nonlinear multiagent systems with actuator failures and unknown dead zones [J]. International Journal of Adaptive Control and Signal Processing, 2018, 32(12): 1694-1714.
[35] AI X L, YU J Q, JIA Z Y, et al. Disturbance observerbased consensus tracking for nonlinear multiagent systems with switching topologies [J]. International Journal of Robust and Nonlinear Control, 2018, 28(6): 2144-2160.
[36] YANG X W, DENG W X, YAO J Y. Disturbanceobserver-based adaptive command filtered control for uncertain nonlinear systems [J]. ISA Transactions, 2022, 130: 490-499.
[37] ZHANG H W, LEWIS F L. Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics [J]. Automatica, 2012, 48(7): 1432-1439.
[38] ZHOU Y L, CHEN M, JIANG C S. Robust tracking control of uncertain MIMO nonlinear systems with application to UAVs [J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1): 25-32.
[39] TONG S C, LI Y M. Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs [J]. IEEE Transactions on Fuzzy Systems, 2013, 21(1): 134-146.
[40] MADANI T, BENALLEGUE A. Adaptive control via backstepping technique and neural networks of a quadrotor helicopter [J]. IFAC Proceedings Volumes, 2008, 41(2): 6513-6518.
[41] SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems [J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899.
[42] YANG X W, DENG W X, YAO J Y. Neural adaptive dynamic surface asymptotic tracking control of hydraulic manipulators with guaranteed transient performance [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022. https://doi.org/10.1109/TNNLS.2022.3141463.
[43] ZHOU Q, CHEN G D, LU R Q, et al. Disturbanceobserver-based event-triggered control for multi-agent systems with input saturation [J]. Scientia Sinica (Informationis), 2019, 49(11): 1502-1516 (in Chinese).
[44] NGUYEN A T, XUAN-MUNG N, HONG S K. Quadcopter adaptive trajectory tracking control: A new approach via backstepping technique [J]. Applied Sciences, 2019, 9(18): 3873.
[45] ZUO Z Y, TIAN B L, DEFOORT M, et al. Fixed-time consensus tracking for multiagent systems with highorder integrator dynamics [J]. IEEE Transactions on Automatic Control, 2018, 63(2): 563-570.
[46] PU M, WU Q X, JIANG C S, et al. Application of adaptive second-order dynamic terminal sliding mode control to near space vehicle [J]. Journal of Aerospace Power, 2010, 25(5): 1169-1176.
[47] CHEN M, JIANG B. Robust attitude control of near space vehicles with time-varying disturbances [J]. International Journal of Control, Automation and Systems, 2013, 11(1): 182-187.
[48] TEE K P, GE S S. Control of fully actuated ocean surface vessels using a class of feedforward approximators [J]. IEEE Transactions on Control Systems Technology, 2006, 14(4): 750-756.
[49] LI T S, ZHANG H Y, YANG X Y. DSC approach to robust adaptive fuzzy tracking control for strict-feedback nonlinear systems [C]//2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery. Jinan: IEEE, 2008: 70-74.
|