[1] SCHWINDT P D D, KNAPPE S, SHAH V, et al. Chip-scale atomic magnetometer [J]. Applied Physics Letters, 2004, 85(26): 6409-6411.
[2] KOMINIS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetometer [J]. Nature, 2003, 422(6932): 596-599.
[3] DANG H B, MALOOF A C, ROMALIS M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer [J]. Applied Physics Letters, 2010, 97(15): 151110.
[4] SHAH V K, WAKAI R T. A compact, high performance atomic magnetometer for biomedical applications [J]. Physics in Medicine and Biology, 2013, 58(22): 8153-8161.
[5] SOHEILIAN A, TEHRANCHI M M, RANJBARAN M. Detection of magnetic tracers with Mx atomic magnetometer for application to blood velocimetry [J]. Scientific Reports, 2021, 11: 7156.
[6] KORTH H, STROHBEHN K, TEJADA F, et al. Chipscale absolute scalar magnetometer for space applications [J]. Johns Hopkins Applied Technical Digest, 2010, 28(3): 248-249.
[7] EKLUND E J. Microgyroscope based on spinpolarized nuclei [D]. Irvine: University of California at Irvine, 2008: 41-63.
[8] KORNACK T W, GHOSH R K, ROMALIS M V. Nuclear spin gyroscope based on an atomic comagnetometer [J]. Physical Review Letters, 2005, 95(23): 230801.
[9] SELTZER S J. Developments in alkali-metal atomic magnetometry [D]. Princeton: Princeton University, 2008: 173-179.
[10] CHU Z Y, SUN X G, WAN S A, et al. Active magnetic compensation of spin-exchange-relaxation-free atomic magnetometer [J]. Optics and Precision Engineering, 2014, 22(7): 1808-1813.
[11] ZHAO J P, LIU G, LU J X, et al. A non-modulated triaxial magnetic field compensation method for spinexchange relaxation-free magnetometer based on zero- field resonance [J]. IEEE Access, 2019, 7: 167557-167565.
[12] COHEN-TANNOUDJI C, DUPONT-ROC J, HAROCHE S, et al. Diverses r′esonances de croisement de niveaux sur des atomes pomp′es optiquement en champ nul II. applications `a la mesure de champs faibles [J]. Revue De Physique Appliqu′ee, 1970, 5(1): 102-108 (in French).
[13] SAENYOT K, SHOJI Y, TAKAHASHI S, et al. Zero magnetic field calibration for single-beam atomic magnetometers using second harmonics [J]. IEEE Magnetics Letters, 2019, 10: 1-4.
[14] COHEN-TANNOUDJI C, DUPONT-ROC J, HAROCHE S, et al. Diverses r′esonances de croisement de niveaux sur des atomes pomp′es optiquement en champ nul. I. th′eorie [J]. Revue De Physique Appliquee, 1970, 5(1): 95-101 (in French).
[15] KANEGSBERG E. A nuclear magnetic resonance(NMR) gyro with optical magnetometer detection [J]. Proceedings of SPIE, 1978, 157: 73-80.
[16] COHEN-TANNOUDJI C, KASTLER A. I optical pumping [J]. Progress in Optics, 1966, 5: 1-81.
[17] COHEN-TANNOUDJI C. Th′eorie quantique du cycle de pompage optique [J]. Annales De Phyusique, 1962, 13(7): 423-468 (in French).
[18] SLOCUM R, MARTON B. Measurement of weak magnetic fields using zero-field parametric resonance in optically pumped He4 [J]. IEEE Transactions on Magnetics, 1973, 9(3): 221-226.
[19] DING Z C, YUAN J, LONG X W. Influence of optical pumping on the transverse spin relaxation of Cs atoms in different ground-state hyperfine levels [J]. Europhysics Letters, 2017, 120(4): 43001.
[20] ZENG X, MIRON E, VAN WIJNGAARDEN W A, et al. Wall relaxation of spin polarized 129Xe nuclei [J]. Physics Letters A, 1983, 96(4): 191-194.
[21] DING Z C, YUAN J, LU G F, et al. Three-axis atomic magnetometer employing longitudinal field modulation [J]. IEEE Photonics Journal, 2017, 9(5): 1-9.
[22] HUANG H C, DONG H F, HU X Y, et al. Three-axis atomic magnetometer based on spin precession modulation [J]. Applied Physics Letters, 2015, 107(18): 182403.
|