[1] WARKIANI M E, KHOO B L, WU L, et al. Ultrafast, label-free isolation of circulating tumor cells fromblood using spiral microfluidics [J]. Nature Protocols,2016, 11(1): 134-148.
[2] GUPTA G P, MASSAGUé J. Cancer metastasis:Building a framework [J]. Cell, 2006, 127(4): 679-695.
[3] ABDULLA A, LIU W J, GHOLAMIPOUR-SHIRAZIA, et al. High-throughput isolation of circulating tumor cells using cascaded inertial focusing microfluidicchannel [J]. Analytical Chemistry, 2018, 90(7): 4397-4405.
[4] YAN B, FU S J, CHANG Y Y, et al. Mutational analysis of OCT4+ and OCT4? circulating tumour cells bysingle cell whole exome sequencing in stage I non-smallcell lung cancer patients [J]. Journal of Shanghai JiaoTong University (Science), 2021, 26(1): 40-46.
[5] MICALIZZI D S, MAHESWARAN S, HABER D A. Aconduit to metastasis: Circulating tumor cell biology[J]. Genes & Development, 2017, 31(18): 1827-1840.
[6] KIM H J, JANG W K, KIM B H, et al. Advancing liquid front shape control in capillary filling ofmicrochannel via arrangement of microposts for microfluidic biomedical Sensors [J]. International Journal of Precision Engineering and Manufacturing, 2016,17(1): 59-63.
[7] SARKAR A, HOU H W, MAHAN A E, et al. Multiplexed affinity-based separation of proteins and cellsusing inertial microfluidics [J]. Scientific Reports, 2016,6: 23589.
[8] MARISCAL J, ALONSO-NOCELO M, MUINELOROMAY L, et al. Molecular profiling of circulating tumour cells identifies Notch1 as a principal regulatorin advanced non-small cell lung cancer [J]. ScientificReports, 2016, 6: 37820.
[9] CHEN Q, YAO L, BURNER D, et al. Epithelial membrane protein 2: A novel biomarker for circulatingtumor cell recovery in breast cancer [J]. Clinical andTranslational Oncology, 2019, 21(4): 433-442.
[10] GOU Y X, ZHANG S, SUN C K, et al. Sheathlessinertial focusing chip combining a spiral channel withperiodic expansion structures for efficient and stableparticle sorting [J]. Analytical Chemistry, 2020, 92(2):1833-1841.
[11] JOHNSTON I D, MCDONNELL M B, TAN C K L,et al. Dean flow focusing and separation of small microspheres within a narrow size range [J]. Microfluidicsand Nanofluidics, 2014, 17(3): 509-518.
[12] MALEKMOHAMMADI M, AKHLAGHI E A,SOLTANI J, et al. Escape velocity sorting in opticaltweezers system using a home-made piezo mirror [J].Journal of Optics, 2020, 22(5): 055301.
[13] TEWARI KUMAR P, DECROP D, SAFDAR S, etal. Digital microfluidics for single bacteria capture andselective retrieval using optical tweezers [J]. Micromachines, 2020, 11(3): 308.
[14] ANTFOLK M, MAGNUSSON C, AUGUSTSSON P,et al. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from whiteblood cells [J]. Analytical Chemistry, 2015, 87(18):9322-9328.
[15] GU Y Y, CHEN C Y, MAO Z M, et al. Acoustofluidiccentrifuge for nanoparticle enrichment and separation[J]. Science Advances, 2021, 7(1): eabc0467.
[16] SHI J Y, LI S Y, ZHANG X F. The acoustic radiationforce on a multi-layered polymer capsule placed in afluid-filled tube [J]. Ultrasonics, 2021, 113: 106365.
[17] PIACENTINI N, MERNIER G, TORNAY R, etal. Separation of platelets from other blood cellsin continuous-flow by dielectrophoresis field-flowfractionation [J]. Biomicrofluidics, 2011, 5(3): 34122-34128.
[18] VAN DEN DRIESCHE S, RAO V, PUCHBERGERENENGL D, et al. Continuous cell from cell separation by traveling wave dielectrophoresis [J]. Sensorsand Actuators B: Chemical, 2012, 170: 207-214.
[19] RASHED M Z, WILLIAMS S J. Advances and applications of isomotive dielectrophoresis for cell analysis [J]. Analytical and Bioanalytical Chemistry, 2020,412(16): 3813-3833.
[20] ABT V, GRINGEL F, HAN A, et al. Separation,characterization, and handling of microalgae by dielectrophoresis [J]. Microorganisms, 2020, 8(4): 540.
[21] LIN X G, YAO J, DONG H, et al. Effective celland particle sorting and separation in screen-printedcontinuous-flow microfluidic devices with 3D sidewallelectrodes [J]. Industrial & Engineering Chemistry Research, 2016, 55(51): 13085-13093.
[22] ALAZZAM A, MATHEW B, ALHAMMADI F. Novelmicrofluidic device for the continuous separation ofcancer cells using dielectrophoresis [J]. Journal of Separation Science, 2017, 40(5): 1193-1200.
[23] MILOH T, NAGLER J. Travelling-wave dipolophoresis: Levitation and electrorotation of Janus nanoparticles [J]. Micromachines, 2021, 12(2): 114.
[24] SIM K, SHI L L, HE G L, et al. Mechanically flexible microfluidics for microparticle dispensing basedon traveling wave dielectrophoresis [J]. Journal ofMicromechanics and Microengineering, 2020, 30(2):024001.
[25] EGGER M, DONATH E. Electrorotation measurements of diamide-induced platelet activation changes[J]. Biophysical Journal, 1995, 68(1): 364-372.
[26] GARCíA-SáNCHEZ P, REN Y K, ARCENEGUI J J,et al. Alternating current electrokinetic properties ofgold-coated microspheres [J]. Langmuir, 2012, 28(39):13861-13870.
[27] TRAINITO C I, BAYART E, SUBRA F, et al. Theelectrorotation as a tool to monitor the dielectric properties of spheroid during the permeabilization [J]. TheJournal of Membrane Biology, 2016, 249(5): 593-600.
[28] HUANG L, ZHAO P, LIANG F, et al. Single-cell3D electro-rotation [J]. Methods in Cell Biology, 2018,148: 97-116.
[29] KIRBY B. Micro- and nanoscale fluid mechanics [M].Cambridge: Cambridge University Press, 2009.
[30] GASCOYNE P R C, VYKOUKAL J. Particle separation by dielectrophoresis [J]. Electrophoresis, 2002,23(13): 1973-1983.
[31] ALI H, PARK C W. Numerical study on the completeblood cell sorting using particle tracing and dielectrophoresis in a microfluidic device [J]. Korea-AustraliaRheology Journal, 2016, 28(4): 327-339.
[32] HENSLEE E A, SANO M B, ROJAS A D, et al. Selective concentration of human cancer cells using contactless dielectrophoresis [J]. Electrophoresis, 2011, 32(18):2523-2529.
[33] LANNIN T, SU W W, GRUBER C, et al. Automatedelectrorotation shows electrokinetic separation of pancreatic cancer cells is robust to acquired chemotherapy resistance, serum starvation, and EMT [J]. Biomicrofluidics, 2016, 10(6): 064109.
[34] FUHR G, GLASSER H, MüLLER T, et al. Cell manipulation and cultivation under a.c. electric field influence in highly conductive culture media [J]. Biochimicaet Biophysica Acta, 1994, 1201(3): 353-360.
[35] COTTET J, FABREGUE O, BERGER C, et al.MyDEP: A new computational tool for dielectric modeling of particles and cells [J]. Biophysical Journal,2019, 116(1): 12-18. |