J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (4): 561-569.doi: 10.1007/s12204-022-2417-6
收稿日期:
2020-06-03
出版日期:
2022-07-28
发布日期:
2022-08-11
GAO Zihanga (高梓航), WANG Xina (王 鑫) ZHAO Yifana (赵一帆), JIN Zhehui a (金哲慧), WANG Ganga (王 刚), GAO Shuoa,b ∗ (高 硕)
Received:
2020-06-03
Online:
2022-07-28
Published:
2022-08-11
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 561-569.
GAO Zihang (高梓航), WANG Xin (王 鑫) ZHAO Yifan (赵一帆), JIN Zhehui (金哲慧), WANG Gang (王 刚), GAO Shuo∗ (高 硕). Piezoelectric-Based Smart Bone Plate for Fracture Healing Progress Monitoring[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 561-569.
[1] | PROTOPAPPAS V C, BAGA D A, FOTIADIS D I, etal. An ultrasound wearable system for the monitoringand acceleration of fracture healing in long bones [J].IEEE Transactions on Biomedical Engineering, 2005,52(9): 1597-1608. |
[2] | BLOKHUIS T J, DEN BOER F C, BRAMER J AM, et al. Evaluation of strength of healing fractureswith dual energy Xray absorptiometry [J]. Clinical Or-thopaedics and Related Research, 2000, 380: 260-268. |
[3] | ESTERHAI J, ALA VI A, MANDELL G A, et al.Sequential technetium-99m/gallium-67 scintigraphicevaluation of subclinical osteomyelitis complicatingfracture nonunion [J]. Journal of Orthopaedic Re-search, 1985, 3(2): 219-225. |
[4] | DEN BOER F C, BRAMER J A M, PATKA P,et al. Quantification of fracture healing with three-dimensional computed tomography [J]. Archives of Or-thopaedic and Trauma Surgery, 1998, 117(6/7): 345-350. |
[5] | GERSHUNI D H, SKYHAR M J, THOMPSON B, etal. A comparison of conventional radiography and com-puted tomography in the evaluation of spiral fracturesof the tibia [J]. The Journal of Bone and Joint SurgeryAmerican Volume, 1985, 67(9): 1388-1395. |
[6] | NAKATSUCHI Y, TSUCHIKANE A, NOMURA A.Assessment of fracture healing in the tibia using theimpulse response method [J]. Journal of OrthopaedicTrauma, 1996, 10(1): 50-62. |
[7] | NIKIFORIDIS G, BEZERIANOS A, DIMAROGO-NAS A, et al. Monitoring of fracture healing by lateraland axial vibration analysis [J]. Journal of Biomechan-ics, 1990, 23(4): 323-330. |
[8] | CLAES L E, HEIGELE C A. Magnitudes of local stressand strain along bony surfaces predict the course andtype of fracture healing [J]. Journal of Biomechanics,1999, 32(3): 255-266. |
[9] | CLAES L E, CUNNINGHAM J L. Monitoring the me-chanical properties of healing bone [J]. Clinical Or-thopaedics and Related Research, 2009, 467(8): 1964-1971. |
[10] | HAMMER R R, HAMMERBY S, LINDHOLM B. Ac-curacy of radiologic assessment of tibial shaft fractureunion in humans [J]. Clinical Orthopaedics and RelatedResearch, 1985(199): 233-238. |
[11] | WHELAN D B, BHANDARI M, STEPHEN D, et al.Development of the radiographic union score for tib-ial fractures for the assessment of tibial fracture heal-ing after intramedullary fixation [J]. The Journal ofTrauma and Acute Care Surgery, 2010, 68(3): 629-632. |
[12] | LOWET G, V AN DER PERRE G. Ultrasound velocitymeasurement in long bones: Measurement method andsimulation of ultrasound wave propagation [J]. Journalof Biomechanics, 1996, 29(10): 1255-1262. |
[13] | MIˇSI ′C D , Z D R A V K O V I ′C M , M I T K O V I ′C M , e t a l .Real-time monitoring of bone fracture recovery by us-ing aware, sensing, smart, and active orthopedic de-vices [J]. IEEE Internet of Things Journal, 2018, 5(6):4466-4473. |
[14] | WOLYNSKI J G, SUTHERLAND C J, DEMIR H V,et al. Utilizing multiple BioMEMS sensors to moni-tor orthopaedic strain and predict bone fracture heal-ing [J]. Journal of Orthopaedic Research, 2019, 37(9):1873-1880. |
[15] | GRASA J, G óMEZ-BENITO M J, GONZ áLEZ-TORRES L A, et al. Monitoring in vivo load transmis-s i o n t h r o u g h a n e x t e r n a l fixator [J]. Annals of Biomed-ical Engineering, 2010, 38(3): 605-612. |
[16] | BORCHANI W, AONO K, LAJNEF N, et al. Mon-itoring of postoperative bone healing using smarttrauma-fixation device with integrated self-poweredpiezo-floating-gate sensors [J]. IEEE Transactions onBiomedical Engineering, 2016, 63(7): 1463-1472. |
[17] | BHALLA S, BAJAJ S. Bone characterization us-ing piezotransducers as biomedical sensors [J]. Strain,2008, 44(6): 475-478. |
[18] | MCGIL VRAY K C, UNAL E, TROYER K L, et al.Implantable microelectromechanical sensors for diag-nostic monitoring and post-surgical prediction of bonefracture healing [J]. Journal of Orthopaedic Research,2015, 33(10): 1439-1446. |
[19] | MELIK R, PERKGOZ N K, UNAL E, et al. Bio-implantable passive on-chip RF-MEMS strain sensingresonators for orthopaedic applications [J]. Journal ofMicromechanics and Microengineering, 2008, 18(11):115017. |
[20] | SEIDE K, ALJUDAIBI M, WEINRICH N, et al. Tele-metric assessment of bone healing with an instru-mented internal fixator: A preliminary study [J]. TheJournal of Bone and Joint Surgery British Volume,2012, 94(3): 398-404. |
[21] | ALF ARO J F, WEISS L E, CAMPBELL P G, etal. BioImplantable bone stress sensor [C]//2005 IEEEEngineering in Medicine and Biology 27th AnnualConference. Shanghai, China: IEEE, 2006, 518-521. |
[22] | OTERO J, FELIS I, HERRERO A, et al. Bragg peak localization with piezoelectric sensors for proton ther-apy treatment [J]. Sensors, 2020, 20(10): 2987. |
[23] | SAKATA K, SUEMATSU K, TAKESHIGE N, etal. Novel method of intraoperative ocular movementmonitoring using a piezoelectric device: Experimentalstudy of ocular motor nerve activating piezoelectric potentials (OMNAPP) and clinical application for skullbase surgeries [J]. Neurosurgical Review, 2020, 43(1):185-193. |
[24] | W ADE R, RICHARDSON J. Outcome in fracturehealing: A review [J]. Injury, 2001, 32(2): 109-114. |
[25] | ZHU P, HUANG G, ZHANG B, et al. Assessmentof fracture healing properties of lovastatin loadednanoparticles: Preclinical study in rat model [J]. ActaBiochimica Polonica, 2019, 66(1): 71-76. |
[26] | EBRAHEIM N A, SA VOLAINE E R, PATEL A, et al.Assessment of tibial fracture union by 35-45 degrees in-ternal oblique radiographs [J]. Journal of OrthopaedicTrauma, 1991, 5(3): 349-350. |
[27] | BHANDARI M, GUYATT G H, SWIONTKOWSKI MF, et al. A lack of consensus in the assessment of frac-ture healing among orthopaedic surgeons [J]. Journalof Orthopaedic Trauma, 2002, 16(8): 562-566. |
[28] | PROTOPAPPAS V C, V A VV A M G, FOTIADIS D I,et al. Ultrasonic monitoring of bone fracture healing[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control, 2008, 55(6): 1243-1255. |
[29] | MOLL J, KEXEL C, MILANCHIAN H, et al. Ultra-sound bone fracture sensing and data communication:Experimental results in a pig limb sample [J]. Ultra-sound in Medicine & Biology, 2019, 45(2): 605-611. |
[30] | POTSIKA V T, GRIV AS K N, GORTSAS T, et al.Boundary element simulation of ultrasonic backscat-tering during the fracture healing process [C]//201638th Annual International Conference of the IEEE En-gineering in Medicine and Biology Society (EMBC ).Orlando: IEEE, 2016: 2913-2916. |
[31] | FOLDES A J, RIMON A, KEINAN D D, et al. Quan-titative ultrasound of the tibia: A novel approach forassessment of bone status [J]. Bone, 1995, 17(4): 363-367. |
[32] | CHURCHES A E, TANNER K E, HARRIS J D.The Oxford External Fixator: Fixator stiffness andthe effects of bone pin loosening [J]. Engineering inMedicine, 1985, 14(1): 3-11. |
[33] | CHEHADE M J, POHL A P, PEARCY M J, et al.Clinical implications of stiffness and strength changesin fracture healing [J]. The Journal of Bone and JointSurgery British Volume, 1997, 79(1): 9-12. |
[34] | DWYER J S M, OWEN P J, EV ANS G A, et al. Stiff-ness measurements to assess healing during leg length-ening: A preliminary report [J]. The Journal of Boneand Joint Surgery. British Volume, 1996, 78(2): 286-289. |
[35] | KAY P R, ROSS E R S, POWELL E S. Developmentand clinical application of an external fixator moni-toring system [J]. Journal of Biomedical Engineering,1989, 11(3): 240-244. |
[36] | RICHARDSON J B, CUNNINGHAM J L, GOOD-SHIP A E, et al. Measuring stiffness can define healingof tibial fractures [J]. The Journal of Bone and JointSurgery British Volume, 1994, 76(3): 389-394. |
[37] | BERGMANN G, DEURETZBACHER G, HELLERM, et al. Hip contact forces and gait patterns fromroutine activities [J]. Journal of Biomechanics, 2001,34(7): 859-871. |
[38] | ARDESHIRYLAJIMI A, GHADERIAN S M H, OM-RANI M D, et al. Biomimetic scaffold containingPVDF nanofibers with sustained TGF-β release incombination with AT-MSCs for bladder tissue engi-neering [J]. Gene, 2018, 676: 195-201. |
[39] | KLINK C D, JUNGE K, BINNEB?SEL M, et al.Comparison of long-term biocompability of PVDF andPP meshes [J]. Journal of Investigative Surgery, 2011,24(6): 292-299. |
[40] | GIOL E D, V AN VLIERBERGHE S, UNGER R E,et al. Biomimetic strategy towards gelatin coatings onPET. Effect of protocol on coating stability and cell-interactive properties [J]. Journal of Materials Chem-istry B, 2019, 7(8): 1258-1269. |
[41] | KLIMIEC E, ZARASKA W, KUCZY ′NSKI S, etal. The investigation of electret film durability inpolyethylene terephthalate (PET) from a certain an-gle of their application as pressure sensors [J]. AppliedMechanics and Materials, 2011, 110: 1252-1258. |
[42] | GUO Y, ZHONG M, F ANG Z, et al. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing [J].Nano Letters, 2019, 19(2): 1143-1150. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||