Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (6): 789-798.doi: 10.1007/s12204-019-2123-1
DUAN Yu (段宇), KIM Cholgyong (金哲景), XU Guobin (徐国宾)
出版日期:
2019-12-15
发布日期:
2019-12-07
通讯作者:
XU Guobin (徐国宾)
E-mail: xuguob@tju.edu.cn
DUAN Yu (段宇), KIM Cholgyong (金哲景), XU Guobin (徐国宾)
Online:
2019-12-15
Published:
2019-12-07
Contact:
XU Guobin (徐国宾)
E-mail: xuguob@tju.edu.cn
摘要: The microbially cemented sand (MCS) material is a new building material with a broad research prospect, although the nationwide cold wave affects the mechanical properties of the material in the practical application. The microstructure of MCS is obtained by computed tomography (CT) and scanning electron microscope (SEM); the thermodynamic mathematical model is established by considering the particle shapes and bonding state based on direct element method (DEM). By studying the damage of temperature drop amplitude and cooling duration to MCS material under the effect of cold wave, the following conclusions are drawn. For a given temperature drop range, an increased cooling time can aggravate the material damage. In addition, a rapid drop in temperature can cause serious damage to the material. The cracks generated by the temperature stress propagate in the direction of the weaker component of the material. The DEM model can be better used to analyze the damage of the MCS structure induced by cold wave.
中图分类号:
DUAN Yu (段宇), KIM Cholgyong (金哲景), XU Guobin (徐国宾). Temperature Drop Model Based on Discrete Element Method for Simulating Damage of Bio-Cemented Sand by Cold Wave[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 789-798.
DUAN Yu (段宇), KIM Cholgyong (金哲景), XU Guobin (徐国宾). Temperature Drop Model Based on Discrete Element Method for Simulating Damage of Bio-Cemented Sand by Cold Wave[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 789-798.
[12] | TANG Y, XU G B, QU C L, et al. Damage simulationof a random aggregate model induced by microwaveunder different discontinuous ratios and exposuretimes [J]. Advances in Materials Science andEngineering, 2016, 2016: 5690272. |
[1] | DHAMI N K, REDDY M S, MUKHERJEE A. Significantindicators for biomineralisation in sand of varyinggrain sizes [J]. Construction and Building Materials,2016, 104: 198-207. |
[13] | HUANG K, XU T, LI G F, et al. The feasibility ofDEM to analyze the temperature field of asphalt mixture[J]. Construction and Building Materials, 2016,106: 592-599. |
[2] | MALEKI M, EBRAHIMI S, ASADZADEH F, et al.Performance of microbial-induced carbonate precipitationon wind erosion control of sandy soil [J]. InternationalJournal of Environmental Science and Technology,2016, 13(3): 937-944. |
[14] | LIU H Y, ROQUETE M, Kou S Q, et al. Characterizationof rock heterogeneity and numerical verification[J]. Engineering Geology, 2004, 72(1): 89-119. |
[3] | LIANG J M, GUO Z Y, DENG L J, et al. Maturefine tailings consolidation through microbial inducedcalcium carbonate precipitation [J]. Canadian Journalof Civil Engineering, 2015, 42(11): 975-978. |
[15] | PAN P Z, XIA T F. Numerical study on coupledthermo-mechanical processes in ¨Asp¨o pillar stabilityexperiment [J]. Journal of Rock Mechanics andGeotechnical Engineering, 2013, 5(2): 136-144. |
[4] | SALIFU E, MACLACHLAN E, IYER K R, et al. Applicationof microbially induced calcite precipitationin erosion mitigation and stabilisation of sandy soilforeshore slopes: A preliminary investigation [J]. EngineeringGeology, 2016, 201(4): 96-105. |
[16] | WALSH S D C, LOMOV I N. Micromechanical modelingof thermal spallation in granitic rock [J]. InternationalJournal of Heat and Mass Transfer, 2013, 65(5):366-373. |
[5] | CANAKCI H, SIDIK W, KILIC I H. Effect of bacterialcalcium carbonate precipitation on compressibilityand shear strength of organic soil [J]. Soils and Foundations,2015, 55(5): 1211-1221. |
[17] | JING L. A review of techniques, advances and outstandingissues in numerical modelling for rock mechanicsand rock engineering [J]. International Journalof Rock Mechanics and Mining Sciences, 2003, 40(3):283-353. |
[6] | UMAR M, KASSIM K A, CHIET K T P. Biologicalprocess of soil improvement in civil engineering: A review[J]. Journal of Rock Mechanics and GeotechnicalEngineering, 2016, 8(5): 767-774. |
[18] | TERREROS I, IORDANOFF I, CHARLES J L. Simulationof continuum heat conduction using DEMdomains [J]. Computational Materials Science, 2013,69(1): 46-52. |
[7] | TANG Y, XU G B, LIAN J J, et al. Effect of temperatureand humidity on the adhesion strength anddamage mechanism of shotcrete-surrounded rock [J].Construction and Building Materials, 2016, 124: 1109-1119. |
[19] | WANNE T S, YOUNG R P. Bonded-particle modelingof thermally fractured granite [J]. InternationalJournal of Rock Mechanics and Mining Science, 2008,45(5): 789-799. |
[8] | DUFOUR N, WONG H, ARSON C, et al. A thermodynamicallyconsistent framework for saturated viscoplasticrock-materials subject to damage [J]. MechanicsResearch Communications, 2012, 45: 15-21. |
[20] | HAHN M, SCHWARZ M, KR¨OPLIN B H, et al. Discreteelement method for the thermal field: Proof ofconcept and determination of the material parameters[J]. Computational Materials Science, 2011, 50(10):2771-2784. |
[9] | SHEN B T, KIM H M, PARK E S, et al. Multiregionboundary element analysis for coupled thermalfracturingprocesses in geomaterials [J]. Rock Mechanicsand Rock Engineering, 2013, 46(1): 135-151. |
[21] | VAN LEW J T, YING A, ABDOU M. A discrete elementmethod study on the evolution of thermomechanicsof a pebble bed experiencing pebble failure [J].Fusion Engineering and Design, 2014, 89(7/8): 1151-1157. |
[10] | RINNE M, SHEN B T, BACKERS T. Modelling fracturepropagation and failure in a rock pillar under mechanicaland thermal loadings [J]. Journal of Rock Mechaicsand Geotechnical Engineering, 2013, 5(1): 73-83. |
[22] | PENNEC F, ALZINA A, TESSIER-DOYEN N, etal. A combined finite-discrete element method forcalculating the effective thermal conductivity of bioaggregatesbased materials [J]. International Journalof Heat and Mass Transfer, 2013, 60(1): 274-283. |
[11] | KOYAMA T, CHIJIMATSU M, SHIMIZU H, etal. Numerical modeling for the coupled thermomechanicalprocesses and spalling phenomena in ¨Asp¨opillar stability experiment (APSE) [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(1):58-72. |
[23] | TSORY T, BEN-JACOB N, BROSH T, et al. ThermalDEM-CFD modeling and simulation of heat transferthrough packed bed [J]. Powder Technology, 2013,244(4): 52-60. |
[12] | TANG Y, XU G B, QU C L, et al. Damage simulationof a random aggregate model induced by microwaveunder different discontinuous ratios and exposuretimes [J]. Advances in Materials Science andEngineering, 2016, 2016: 5690272. |
[24] | RICKELT S, SUDBROCK F,WIRTZ S, et al. CoupledDEM/CFD simulation of heat transfer in a genericgrate system agitated by bars [J]. Powder Technology,2013, 249(11): 360-372. |
[13] | HUANG K, XU T, LI G F, et al. The feasibility ofDEM to analyze the temperature field of asphalt mixture[J]. Construction and Building Materials, 2016,106: 592-599. |
[25] | GUI N, YAN J, XU W K, et al. DEM simulation andanalysis of particle mixing and heat conduction in arotating drum [J]. Chemical Engineering Science, 2013,97(7): 225-234. |
[14] | LIU H Y, ROQUETE M, Kou S Q, et al. Characterizationof rock heterogeneity and numerical verification[J]. Engineering Geology, 2004, 72(1): 89-119. |
[26] | KOMOSSA H, WIRTZ S, SCHERER V, et al.Transversal bed motion in rotating drums using sphericalparticles: Comparison of experiments with DEMsimulations [J]. Powder Technology, 2014, 264(3): 96-104. |
[15] | PAN P Z, XIA T F. Numerical study on coupledthermo-mechanical processes in ¨Asp¨o pillar stabilityexperiment [J]. Journal of Rock Mechanics andGeotechnical Engineering, 2013, 5(2): 136-144. |
[27] | GARBOCZI E J, BENTZ D P. Multiscale analytical/numerical theory of the diffusivity of concrete [J].Advanced Cement Based Materials, 1998, 8(2): 77-88. |
[16] | WALSH S D C, LOMOV I N. Micromechanical modelingof thermal spallation in granitic rock [J]. InternationalJournal of Heat and Mass Transfer, 2013, 65(5):366-373. |
[28] | XU G B, TANG Y, LIAN J J, et al. Mineralizationprocess of biocemented sand and impact of bacteriaand calcium ions concentrations on crystal morphology[J]. Advances in Materials Science and Engineering,2017, 2017: 5301385. |
[17] | JING L. A review of techniques, advances and outstandingissues in numerical modelling for rock mechanicsand rock engineering [J]. International Journalof Rock Mechanics and Mining Sciences, 2003, 40(3):283-353. |
[29] | TANG Y, LIAN J J, XU G B, et al. Effect of cementationon calcium carbonate precipitation of loose sandresulting from microbial treatment [J]. Transactions ofTianjin University, 2017, 23(6): 547-554. |
[18] | TERREROS I, IORDANOFF I, CHARLES J L. Simulationof continuum heat conduction using DEMdomains [J]. Computational Materials Science, 2013,69(1): 46-52. |
[30] | TANG Y, XU G B, LIAN J J, et al. Research on simulationanalysis method of microbial cemented sandbased on discrete element method [J]. Advances in MaterialsScience and Engineering, 2019, 2019: 7173414. |
[19] | WANNE T S, YOUNG R P. Bonded-particle modelingof thermally fractured granite [J]. InternationalJournal of Rock Mechanics and Mining Science, 2008,45(5): 789-799. |
[31] | FENG K, MONTOYA B M, EVANS T M. Discreteelement method simulations of bio-cemented sands [J].Computers and Geotechnics, 2017, 85: 139-150. |
[20] | HAHN M, SCHWARZ M, KR¨OPLIN B H, et al. Discreteelement method for the thermal field: Proof ofconcept and determination of the material parameters[J]. Computational Materials Science, 2011, 50(10):2771-2784. |
[32] | BARDET J P. Observations on the effects of particlerotations on the failure of idealized granular materials[J]. Mechanics of Materials, 1994, 18(94): 159-182. |
[21] | VAN LEW J T, YING A, ABDOU M. A discrete elementmethod study on the evolution of thermomechanicsof a pebble bed experiencing pebble failure [J].Fusion Engineering and Design, 2014, 89(7/8): 1151-1157. |
[33] | POTYONDY D O, CUNDALL P A. A bonded-particlemodel for rock [J]. International Journal of Rock Mechanicsand Mining Sciences, 2004, 41(8): 1329-1364. |
[22] | PENNEC F, ALZINA A, TESSIER-DOYEN N, etal. A combined finite-discrete element method forcalculating the effective thermal conductivity of bioaggregatesbased materials [J]. International Journalof Heat and Mass Transfer, 2013, 60(1): 274-283. |
[34] | MEISELS R, TOIFL M, HARTLIEB P, et al. Microwavepropagation and absorption and its thermomechanicalconsequences in heterogeneous rocks [J].International Journal of Mineral Processing, 2015,135(3): 40-51. |
[23] | TSORY T, BEN-JACOB N, BROSH T, et al. ThermalDEM-CFD modeling and simulation of heat transferthrough packed bed [J]. Powder Technology, 2013,244(4): 52-60. |
[35] | TANG Y, XU G B, YAN Y, et al. Thermal crackinganalysis of microbial cemented sand under variousstrains based on the DEM [J]. Advances in MaterialsScience and Engineering, 2018, 2018: 7528746. |
[24] | RICKELT S, SUDBROCK F,WIRTZ S, et al. CoupledDEM/CFD simulation of heat transfer in a genericgrate system agitated by bars [J]. Powder Technology,2013, 249(11): 360-372. |
[36] | WANNE T S, YOUNG R P. Bonded-particle modelingof thermally fractured granite [J]. InternationalJournal of Rock Mechanics and Mining Sciences, 2008,45(5): 789-799. |
[25] | GUI N, YAN J, XU W K, et al. DEM simulation andanalysis of particle mixing and heat conduction in arotating drum [J]. Chemical Engineering Science, 2013,97(7): 225-234. |
[37] | YUAN M D, XIAO M, YANG G H. Crack state ofChangsha arch dam and analysis on the effects of coldwave [J]. Journal of Hydroelectric Engineering, 2012,31(3): 175-181 (in Chinese). |
[26] | KOMOSSA H, WIRTZ S, SCHERER V, et al.Transversal bed motion in rotating drums using sphericalparticles: Comparison of experiments with DEMsimulations [J]. Powder Technology, 2014, 264(3): 96-104. |
[38] | ZHOU W, LI S R, LIU X H, et al. Simulation of concretespecimens temperature cracks using particle flowcode [J]. Journal of Hydroelectric Engineering, 2013,32(3): 187-193 (in Chinese). |
[27] | GARBOCZI E J, BENTZ D P. Multiscale analytical/numerical theory of the diffusivity of concrete [J].Advanced Cement Based Materials, 1998, 8(2): 77-88. |
[39] | WANG Z L, LI Y C, WANG J G. A damage-softeningstatistical constitutive model considering rock residualstrength [J]. Computers & Geosciences, 2007, 33(1):1-9. |
[28] | XU G B, TANG Y, LIAN J J, et al. Mineralizationprocess of biocemented sand and impact of bacteriaand calcium ions concentrations on crystal morphology[J]. Advances in Materials Science and Engineering,2017, 2017: 5301385. |
[29] | TANG Y, LIAN J J, XU G B, et al. Effect of cementationon calcium carbonate precipitation of loose sandresulting from microbial treatment [J]. Transactions ofTianjin University, 2017, 23(6): 547-554. |
[30] | TANG Y, XU G B, LIAN J J, et al. Research on simulationanalysis method of microbial cemented sandbased on discrete element method [J]. Advances in MaterialsScience and Engineering, 2019, 2019: 7173414. |
[31] | FENG K, MONTOYA B M, EVANS T M. Discreteelement method simulations of bio-cemented sands [J].Computers and Geotechnics, 2017, 85: 139-150. |
[32] | BARDET J P. Observations on the effects of particlerotations on the failure of idealized granular materials[J]. Mechanics of Materials, 1994, 18(94): 159-182. |
[33] | POTYONDY D O, CUNDALL P A. A bonded-particlemodel for rock [J]. International Journal of Rock Mechanicsand Mining Sciences, 2004, 41(8): 1329-1364. |
[34] | MEISELS R, TOIFL M, HARTLIEB P, et al. Microwavepropagation and absorption and its thermomechanicalconsequences in heterogeneous rocks [J].International Journal of Mineral Processing, 2015,135(3): 40-51. |
[35] | TANG Y, XU G B, YAN Y, et al. Thermal crackinganalysis of microbial cemented sand under variousstrains based on the DEM [J]. Advances in MaterialsScience and Engineering, 2018, 2018: 7528746. |
[36] | WANNE T S, YOUNG R P. Bonded-particle modelingof thermally fractured granite [J]. InternationalJournal of Rock Mechanics and Mining Sciences, 2008,45(5): 789-799. |
[37] | YUAN M D, XIAO M, YANG G H. Crack state ofChangsha arch dam and analysis on the effects of coldwave [J]. Journal of Hydroelectric Engineering, 2012,31(3): 175-181 (in Chinese). |
[38] | ZHOU W, LI S R, LIU X H, et al. Simulation of concretespecimens temperature cracks using particle flowcode [J]. Journal of Hydroelectric Engineering, 2013,32(3): 187-193 (in Chinese). |
[39] | WANG Z L, LI Y C, WANG J G. A damage-softeningstatistical constitutive model considering rock residualstrength [J]. Computers & Geosciences, 2007, 33(1):1-9. |
[1] | HU Jun *(胡俊), REN Jianwei (任建伟), WU Deyi (吴德义). Dynamic Mechanical Properties of EPS Concrete Under Impact Loading[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 94-100. |
[2] | LIU Jianhui (刘俭辉), WEI Yaobing (韦尧兵), YAN Changfeng (剡昌锋), LANG Shanshan (郎珊珊). Method for Predicting Crack Initiation Life of Notched Specimen Based on Damage Mechanics[J]. sa, 2018, 23(2): 286-290. |
[3] | CAO Ling1,2* (曹 玲), ZHANG Hua1 (张 华), CHEN Yong1 (陈 勇). Hydraulic Properties Analysis of the Unsaturated Cracked Soil[J]. 上海交通大学学报(英文版), 2017, 22(1): 35-044. |
[4] | ZHENG An-xing (郑安兴), LUO Xian-qi*(罗先启). Numerical Study of Quasi-Static Crack Growth Problems Based on Extended Finite Element Method[J]. 上海交通大学学报(英文版), 2014, 19(6): 736-746. |
[5] | FENG Shao-kong1,2* (冯少孔), HUANG Tao3 (黄 涛), LI Hong-jie4 (李宏阶). Automatic Identification of Cracks from Borehole Image Under Complicated Geological Conditions[J]. 上海交通大学学报(英文版), 2013, 18(6): 699-705. |
[6] | HUANG Xiao-guang1,2 (黄小光), XU Jin-quan1* (许金泉), FENG Miao-lin1 (冯淼林). Energy Principle of Corrosion Environment Accelerating Crack Propagation During Anodic Dissolution Corrosion Fatigue[J]. 上海交通大学学报(英文版), 2013, 18(2): 190-196. |
[7] | WANG Zhong-chang1,2* (王忠昶), ZHAO De-shen2 (赵德深), WU Hui-jun1 (吴会军). Study on Toughening on Crack Prevention of Jointed Rock Masses with Different Pre-Stress Anchor Cables[J]. 上海交通大学学报(英文版), 2012, 17(5): 552-558. |
[8] | RONG Hui (荣辉), QIAN Chun-xiang (钱春香). Development of Microbe Cementitious Material in China[J]. 上海交通大学学报(英文版), 2012, 17(3): 350-355. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||