Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (6): 803-810.doi: 10.1007/s12204-018-2001-2

• • 上一篇    下一篇

Comparison of Biomechanical Properties and Hemodynamics of Three Different Vena Cava Filters

HAN Qingsong (韩青松), CAI Xiangwen (蔡相文), FENG Xiaojuan (冯小娟), ZHANG Qingxiang (张庆祥), FENG Haiquan (冯海全)   

  1. (College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)
  • 出版日期:2018-12-01 发布日期:2018-12-07
  • 通讯作者: HAN Qingsong (韩青松) E-mail:hqs@imut.edu.cn

Comparison of Biomechanical Properties and Hemodynamics of Three Different Vena Cava Filters

HAN Qingsong (韩青松), CAI Xiangwen (蔡相文), FENG Xiaojuan (冯小娟), ZHANG Qingxiang (张庆祥), FENG Haiquan (冯海全)   

  1. (College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)
  • Online:2018-12-01 Published:2018-12-07
  • Contact: HAN Qingsong (韩青松) E-mail:hqs@imut.edu.cn

摘要: The interaction mechanism of three types of vena cava filters (VCFs) with blood vessels and their influence on the bloodstream during the process of implantation are investigated by finite element method and computational fluid dynamics. The VCF models are set up with Solidworks software. Using ABAQUS software, we simulate the working conditions of the VCFs in the vessel to analyze the stress distribution and radial support stiffness of the vessel wall and the filter surface. Using FLUENT software, we simulate and analyze the velocity, pressure and shear stress distributions of blood flow when the VCFs are at their working conditions. For the retrievable VCF (R-VCF), the peak stress at the working conditions of the VCF is the highest, the peak stress toward the vessel wall is the lowest, and the support stiffness is the lowest. For the permanent VCF (P-VCF), the peak stress at the working conditions of the VCF is the highest, the peak stress toward the vessel wall is the lowest, and the support stiffness is the highest. Because of the structure of scaffolding support units and the tendency to form intimal hyperplasia on their support units, both the convertible VCF (C-VCF) and the P-VCF can embed their support units in the hyperplasia skin. This effectively prevents them from harming blood veins through filter damage at the pulse load conditions. As the biomechanical property of the C-VCF is between those of the R-VCF and the P-VCF, it has smaller obstacle to blood flow after conversion and has some fragmentation effects on the thrombus. The results show that different types of VCFs differ in their biomechanical and hemodynamic properties after implantation. Therefore, the simulative analysis can provide a reference basis for filter design and clinical decision making.

关键词: vena cava filter (VCF) , computational fluid dynamics , finite element method , biomechanics property

Abstract: The interaction mechanism of three types of vena cava filters (VCFs) with blood vessels and their influence on the bloodstream during the process of implantation are investigated by finite element method and computational fluid dynamics. The VCF models are set up with Solidworks software. Using ABAQUS software, we simulate the working conditions of the VCFs in the vessel to analyze the stress distribution and radial support stiffness of the vessel wall and the filter surface. Using FLUENT software, we simulate and analyze the velocity, pressure and shear stress distributions of blood flow when the VCFs are at their working conditions. For the retrievable VCF (R-VCF), the peak stress at the working conditions of the VCF is the highest, the peak stress toward the vessel wall is the lowest, and the support stiffness is the lowest. For the permanent VCF (P-VCF), the peak stress at the working conditions of the VCF is the highest, the peak stress toward the vessel wall is the lowest, and the support stiffness is the highest. Because of the structure of scaffolding support units and the tendency to form intimal hyperplasia on their support units, both the convertible VCF (C-VCF) and the P-VCF can embed their support units in the hyperplasia skin. This effectively prevents them from harming blood veins through filter damage at the pulse load conditions. As the biomechanical property of the C-VCF is between those of the R-VCF and the P-VCF, it has smaller obstacle to blood flow after conversion and has some fragmentation effects on the thrombus. The results show that different types of VCFs differ in their biomechanical and hemodynamic properties after implantation. Therefore, the simulative analysis can provide a reference basis for filter design and clinical decision making.

Key words: vena cava filter (VCF) , computational fluid dynamics , finite element method , biomechanics property

中图分类号: