[1] LIU W Z, ZHANG L, CHENG X G. Preventive effectof inferior vena caval filter on perioperative pulmonaryembolism for the patients with femoral intertrochantericfracture combined with lower extremitydeep vein thrombosis [J]. Journal of Xinxiang MedicalUniversity, 2015, 32(8): 777-779 (in Chinese).
[2] JOHNSON M S, NEMCEK A A, BENENATI J F, etal. The safety and effectiveness of the retrievable optioninferior vena cava filter: A United States prospectivemulticenter clinical study [J]. Journal of Vascular& Interventional Radiology, 2010, 21(7): 1173-1184.
[3] CHEN L F, CAI X D. Clinical research of inferior venacava filter in preventing 93 cases with lethality pulmonaryembolism [J]. Chinese and Foreign MedicineTreatment, 2017, 36(9): 55-57 (in Chinese).
[4] CHEN L, GU J P, LOUWS, et al. Application of interventionaltreatment combined with intravenous thrombolysisin the treatment of acute pulmonary embolism[J]. Chinese Medical Equipment, 2014, 29(11): 37-40(in Chinese).
[5] HAN J C, LI Z G, WANG J Y. Application of nickeltitanium alloy in vena cava filter [J]. China MedicalEquipment, 2016, 31(4): 75-80 (in Chinese).
[6] GUO F, FENG H Q, HAN Q S, et al. Comparativeanalysis on thrombus filtration efficiency for threekinds of convertible vena cava filters [J]. Journalof Medical Biomechanics, 2017, 32(3): 261-266 (inChinese).
[7] CALKINS H, HINDRICKS G, CAPPATO R, et al.2017 HRS/EHRA/ECAS/APHRS/SOLAECE expertconsensus statement on catheter and surgical ablationof atrial fibrillation: Executive summary [J]. Journal ofInterventional Cardiac Electrophysiology, 2017, 50(1):1-55.
[8] TANG C X, LI E B, LI H Q. Particle image velocimetrybased on wavelength division multiplexing [J]. Opticsand Laser Technology, 2018, 98: 318-325.
[9] HEIKENFELD J, ALLEN S C, STECKL A J. P-59:A novel fluorescent display using light wave couplingtechnology [J]. Sid Symposium Digest of Technical Papers,2004, 35(1): 470-473.
[10] YALLAMPALLI S, IRANI Z??KALVA S P, et al. Endovascularremoval of a permanent “trap ease” inferiorvena cava filter [J]. Vascular and EndovascularSurgery, 2013, 47(5): 379-382.
[11] ZILBERMAN-RUDENKO J, SYLMAN J L, LAKSHMANAN H L S, et al. Dynamics of blood flow andthrombus formation in a multi-bypass microfluidic laddernetwork [J]. Cellular and Molecular Bioengineering,2017, 10(1): 1-14.
[12] NICOL′AS M, LUCEA B, LABORDA A, et al. Influenceof a commercial antithrombotic filter on the cavalblood flow during neutra and Valsalva maneuver [J].Journal of Medical Devices, 2017, 11(3): 031002.
[13] AYCOCK K I, CAMPBELL R L, LYNCH F C, et al.The importance of hemorheology and patient anatomyon the hemodynamics in the inferior vena cava [J]. Annalsof Biomedical Engineering, 2016, 44(12): 1-15.
[14] AYCOCK K I, CAMPBELL R L, MANNING K B, etal. A resolved two-way coupled CFD/6-DOF approachfor predicting embolus transport and the embolustrappingefficiency of IVC filters [J]. Biomechanics &Modeling in Mechanobiology, 2017, 16(3): 851-869.
[15] PAN C J, LIU H Q, WANG Y N, et al. Phase transformationand mechanical behaviors of vena cava filtermodified by deposition of copper-titanium coating [J].Materials Research Bulletin, 2014, 60: 217-221.
[16] ZHOU H J, LIU H F, HUANG H H. Mechanical behaviorof super-elastic home-made NiTi shape memoryalloy bar in tension [J]. Advanced Materials Research,2013, 671-674: 1817-1820.
[17] WANG X M, QUE Z F,WANG Y F, et al. The superelasticmechanical properties of NiTi alloy and its application[M]. Beijing: Science Press, 2009 (in Chinese).
[18] QIU H R, FENG H Q, WANG W H, et al. Analysis onbiomechanical properties and hemodynamics of venacava filters with different numbers of support poles [J].Journal of Medical Biomechanics, 2015, 30(4): 304-310 (in Chinese).
[19] HALABIAN M, KARIMI A, BEIGZADEH B, et al.A numerical study on the hemodynamic and shearstress of double aneurysm through S-shaped vessel[J]. Biomedical Engineering: Applications, Basis andCommunications, 2015, 27(3): 1550033.
[20] GU X Z, CHENG J, LI L J, et al. Experimentalstudy on hemodynamics of vascular stent-coupled systemunder pulsating flow [J]. Life Science Instruments,2017(2): 29-33 (in Chinese).
[21] ZHANG Z Z, QIAO A K, FU W Y. Mechanical analysison treatment of vertebral stenosis by stents withdifferent links [J]. Journal of Medical Biomechanics,2013, 28(1): 44-49 (in Chinese).
[22] ASLAN S. Comparison of the hemodynamic filtering methods and particle filter with extended Kalmanfilter approximated proposal function as an efficienthemodynamic state estimation method [J]. BiomedicalSignal Processing and Control, 2016, 25: 99-107.
|