[1] VANDAMME L, DETOURNAY E, CHENG A H D. A twodimensional poroelastic displacement discontinuity method for hydraulic fracture simulation [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13(2): 215-224.
[2] VERDE A, GHASSEMI A. A fast multipole displacement discontinuity method (FM-DDM) for geomechanics reservoir simulations [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(18): 1953-1974.
[3] TAO Q, EHLIG-ECONOMIDES C A, GHASSEMI A,et al. Investigation of stress-dependent fracture permeability in naturally fractured reservoirs using a fully coupled poroelastic displacement discontinuity model [C]//SPE Annual Technical Conference and Exhibition.New Orleans, Louisiana: Society of Petroleum Engineers, 2009: 1-4.
[4] HENSHELL R D, SHAW K G. Crack tip finite elements are unnecessary [J]. International Journal for Numerical Methods in Engineering, 1975, 9(3): 495-507.
[5] BARSOUM R S. On the use of isoparametric finite elements in linear fracture mechanics [J]. International Journal for Numerical Methods in Engineering, 1976,10(1): 25-37.
[6] CARSTENSEN C, STEPHAN E P. A posteriori error estimates for boundary element methods [J]. Mathematics of Computation, 1995, 64(210): 215-224.
[7] GUO B Q, HEUER N. The optimal rate of convergence of the p-version of the boundary element method in two dimensions [J]. Numerische Mathematik, 2004, 98(3):499-538.
[8] GUO B Q, HEUER N. The optimal convergence of the h-p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains [J]. Advances in Computational Mathematics,2006, 24(1): 353-374.
[9] HOLM H, MAISCHAK M, STEPHAN E P. Exponential convergence of the h-p version BEM for mixed boundary value problems on polyhedrons [J]. Mathematical Methods in the Applied Sciences, 2008, 31(17):2069- 2093.
[10] OH H S, BABUˇSKA I. The method of auxiliary mapping for the finite element solutions of elasticity problems containing singularities [J]. Journal of Computational Physics, 1995, 121(2): 193-212.
[11] OH H S, DAVIS C, KIM J G, et al. Reproducing polynomial particle methods for boundary integral equations[J]. Computational Mechanics, 2011, 48(1): 27-45.
[12] OH H S, JEONG J W, KIM J G. The reproducing singularity particle shape functions for problems containing singularities [J]. Computational Mechanics, 2007,41(1): 135-157.
[13] CHIARAMONTE M M, SHEN Y, LEW A J. Mapped finite element methods: High-order approximations of problems on domains with cracks and corners [J]. International Journal for Numerical Methods in Engineering,2017, 111(9): 864-900.
[14] CROUCH S L. Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution [J]. International Journal for Numerical Methods in Engineering, 1976, 10(2): 301-343.
[15] CRUSE T A. Boundary element analysis in computational fracture mechanics [M]. Dordrecht: Kluwer Academic Publishers, 1988.
[16] HADAMARD J. Lectures on Cauchy’s problem in linear partial differential equations [M]. New Haven: Yale University Press, 1925.
[17] GONNET P. Adaptive quadrature re-revisited [D].Zurich: Department of Computer Science, Swiss Federal Institute of Technology, 2009.
[18] ATTEWELL P B, FARMER I W. Principles of engineering geology [M]. New York: John Wiley & Sons Inc., 1976. [19] SNEDDON I N, Lowengrub M. Crack problems in the classical theory of elasticity [M]. New York: Wiley,1969.
[20] WEERTMAN J. Dislocation based fracture mechanics [M]. Singapore: World Scientific Publishing Co. Inc.,1996.
|