[1] PADTURE N P, GELL M, JORDAN E H. Thermalbarrier coatings for gas-turbine engine applications [J].Science, 2002, 296(5566): 280-284.
[2] CAO X Q, VASSEN R, STOEVER D. Ceramic materialsfor thermal barrier coatings [J]. Journal of theEuropean Ceramic Society, 2004, 24(1): 1-10.
[3] NATH S, MANNA I, MAJUMDAR J D. Nanomechanicalbehavior of yttria stabilized zirconia (YSZ) basedthermal barrier coating [J]. Ceramics International,2015, 41(4): 5247-5256.
[4] NAIT-ALI B, HABERKO K, VESTEGHEM H, etal. Thermal conductivity of highly porous zirconia[J]. Journal of the European Ceramic Society, 2006,26(16): 3567-3574.
[5] PIA G, CASNEDI L, SANNA U. Porosity and poresize distribution influence on thermal conductivity ofyttria-stabilized zirconia: Experimental findings andmodel predictions [J]. Ceramics International, 2016,42(5): 5802-5809.
[6] SCHLICHTING K W, PADTURE N P, KLEMENS PG. Thermal conductivity of dense and porous yttriastabilizedzirconia [J]. Journal of Materials Science,2001, 36(12): 3003-3010.
[7] PIA G. High porous yttria-stabilized zirconia withligned pore channels: Morphology directionality influenceon heat transfer [J]. Ceramics International,2016, 42(10): 11674-11681.
[8] NAN C W, BIRRINGER R, CLARKE D R, et al. Effectivethermal conductivity of particulate compositeswith interfacial thermal resistance [J]. Journal of AppliedPhysics, 1997, 81(10): 6692-6699.
[9] BOURRET J, TESSIER-DOYEN N, NAIT-ALI B, etal. Effect of the pore volume fraction on the thermalconductivity and mechanical properties of kaolin-basedfoams [J]. Journal of the European Ceramic Society,2013, 33(9): 1487-1495.
[10] CHUNG J D, KAVIANY M. Effects of phonon porescattering and pore randomness on effective conductivityof porous silicon [J]. International Journal of Heatand Mass Transfer, 2000, 43(4): 521-538.
[11] HSIEH T Y, LIN H, HSIEH T J, et al. Thermalconductivity modeling of periodic porous siliconwith aligned cylindrical pores [J]. Journal of AppliedPhysics, 2012, 111(12): 124329.
[12] WANG M, PAN N. Modeling and prediction of theeffective thermal conductivity of random open-cellporous foams [J]. International Journal of Heat andMass Transfer, 2008, 51(5/6): 1325-1331.
[13] WANG M, WANG J, PAN N, et al. Three-dimensionaleffect on the effective thermal conductivity of porousmedia [J]. Journal of Physics D: Applied Physics, 2006,40(1): 260.
[14] GUO Y, WANG M. Lattice Boltzmann modelingof phonon transport [J]. Journal of ComputationalPhysics, 2016, 315: 1-15.
[15] LEE J H, GALLI G A, GROSSMAN J C. NanoporousSi as an efficient thermoelectric material [J]. Nano Letters,2008, 8(11): 3750-3754.
[16] HE Y, DONADIO D, LEE J H, et al. Thermal transportin nanoporous silicon: Interplay between disorderat mesoscopic and atomic scales [J]. ACS Nano, 2011,5(3): 1839-1844.
[17] LAU K C, DUNLAP B I. Molecular dynamics simulationof yttria-stabilized zirconia (YSZ) crystalline andamorphous solids [J]. Journal of Physics: CondensedMatter, 2011, 23(3): 035401.
[18] FREEMAN J J, ANDERSON A C. Thermal conductivityof amorphous solids [J]. Physical Review B, 1986,34(8): 5684.
[19] HE Y, DONADIO D, GALLI G. Morphology and temperaturedependence of the thermal conductivity ofnanoporous SiGe [J]. Nano Letters, 2011, 11(9): 3608-3611.
[20] ZHOU XW, JONES R E. Effects of nano-void density,size and spatial population on thermal conductivity:A case study of GaN crystal [J]. Journal of Physics:Condensed Matter, 2012, 24(32): 325804.
[21] BRINKMAN H W, BRIELS W J, VERWEIJH. Molecular dynamics simulations of yttriastabilizedzirconia [J]. Chemical Physics Letters, 1995,247(4/5/6): 386-390.
[22] SCHELLING P K, PHILLPOT S R. Mechanism ofthermal transport in zirconia and yttria-stabilized zirconiaby molecular-dynamics simulation [J]. Journalof the American Ceramic Society, 2001, 84(12): 2997-3007.
[23] CARSON J K, LOVATT S J, TANNER D J, et al.An analysis of the influence of material structure onthe effective thermal conductivity of theoretical porousmaterials using finite element simulations [J]. InternationalJournal of Refrigeration, 2003, 26(8): 873-880.
[24] MURTHY J Y, MATHUR S R. Computation of submicronthermal transport using an unstructured finitevolume method [J]. Journal of Heat Transfer, 2002,124(6): 1176-1181.
[25] TIAN Z, HU H, SUN Y. A molecular dynamics studyof effective thermal conductivity in nanocomposites[J]. International Journal of Heat and Mass Transfer,2013, 61: 577-582.
[26] PLIMPTON S. Fast parallel algorithms for shortrangemolecular dynamics [J]. Journal of ComputationalPhysics, 1995, 117(1): 1-19.
[27] VAN BEEST B W H, KRAMER G J, VAN SANTENR A. Force fields for silicas and aluminophosphatesbased on ab initio calculations [J]. Physical Review Letters,1990, 64: 1955.
[28] ALDEBERT P, TRAVERSE J P. Structure and ionicmobility of zirconia at high temperature [J]. Journalof the American Ceramic Society, 1985, 68(1): 34-40.[29] MINERVINI L, GRIMES R W, SICKAFUS K E. Disorderin pyrochlore oxides [J]. Journal of the AmericanCeramic Society, 2000, 83(8): 1873-1878.
[30] SCHELLING P K, PHILLPOT S R, KEBLINSKI P.Comparison of atomic-level simulation methods forcomputing thermal conductivity [J]. Physical ReviewB, 2002, 65(14): 144306.
[31] LUKES J R, TIEN C L. Molecular dynamics simulationof thermal conduction in nanoporous thin films [J].Microscale Thermophysical Engineering, 2004, 8(4):341-359.
[32] ZHANG X, BAO H, HU M. Bilateral substrate effecton the thermal conductivity of two-dimensional silicon[J]. Nanoscale, 2015, 7(14): 6014-6022.
|