[1] |
KOGUT L, ETSION I. A static friction model forelastic-plastic contacting rough surfaces [J]. Transactionsof the ASME: Journal of Tribology, 2004, 126(1):34-40. [2] CIAVARELLA M, DEMELIO G. Elastic multiscalecontact of rough surfaces: Archard’s model revisitedand comparisons with modern fractal models [J].Transactions of the ASME: Journal of Applied Mechanics,2001, 68(3): 496-498. [3] MAJUMDAR A, BHUSHAN B. Fractal model ofelastic-plastic contact between rough surfaces [J].Transactions of the ASME: Journal of Tribology, 1991,113(1): 1-11. [4] CIAVARELLA M, MUROLO G, DEMELIO G, et al.Elastic contact stiffness and contact resistance for theWeierstrass profile [J]. Journal of the Mechanics andPhysics of Solids, 2004, 52(6): 1247-1265. [5] YAN W, KOMVOPOULOS K. Contact analysis ofelastic-plastic fractal surfaces [J]. Journal of AppliedPhysics, 1998, 84(7): 3617-3624. [6] BORA C K, FLATER E E, STREET M D, et al. Multiscaleroughness and modeling of MEMS interfaces [J].Tribology Letters, 2005, 19(1): 37-48. [7] SAHOO P, ROY CHOWDHURY S K. A fractal analysisof adhesive wear at the contact between rough solids[J]. Wear, 2002, 253(9/10): 924-934. [8] KOGUT L, KOMVOPOULOS K. Electrical contactresistance theory for conductive rough surfaces separatedby a thin insulating film [J]. Journal of AppliedPhysics, 2004, 95(2): 576-585. [9] KOGUT L, JACKSON R L. A comparison of contactmodeling utilizing statistical and fractal approacher[J]. Transactions of the ASME: Journal of Tribology,2006, 128(1): 213-217. [10] CHUNG J C, LIN J F. Fractal model developed forelliptic elastic-plastic asperity microcontacts of roughsurfaces [J]. Transactions of the ASME: Journal of Tribology,2004, 126(4): 646-654. [11] LIOU J L, LIN J F. A modified fractal microcontactmodel developed for asperity heights with variablemorphology parameters [J]. Wear, 2010, 268(1/2):133-144. [12] MORAG Y, ETSION I. Resolving the contradictionof asperities plastic to elastic mode transition in currentcontact models of fractal rough surfaces [J]. Wear,2007, 262(5/6): 624-629. [13] GOEDECKE A, JACKSON R L, MOCK R. A fractalexpansion of a three dimensional elastic-plastic multiscalerough surface contact model [J]. Tribology International,2013, 59: 230-239. [14] YUAN Y, GAN L, LIU K, et al. Elastoplastic contactmechanics model of rough surface based on fractal theory[J]. Chinese Journal of Mechanical Engineering,2017, 30(1): 207-215. [15] WANG S, KOMVOPOULOS K. A fractal theory of theinterfacial temperature distribution in the slow slidingregime: Part II——Multiple domains, elastoplasticcontacts and applications [J]. Transactions of theASME: Journal of Tribology, 1994, 116(4): 824-832. [16] ZHANG X L, WANG N S, LAN G S, et al. Tangentialdamping and its dissipation factor models of jointinterfaces based on fractal theory with simulations [J].Transactions of the ASME: Journal of Tribology, 2014,136(1): 011704. [17] HARDY G H.Weierstrass’s non-differentiable function[J]. Transactions of the American Mathematical Society,1916, 17(3): 301-325. [18] SHI J P, CAO X S, ZHU H. Tangential contact stiffnessof rough cylindrical faying surfaces based on thefractal theory [J]. Transactions of the ASME: Journalof Tribology, 2014, 136(4): 041401. [19] POPOV V L. Contact mechanics and friction physicalprinciples and applications [M]. New York: Springer-Verlag Berlin Heidelberg, 2010: 58. [20] WANG X C. Finite element method [M]. Beijing: TsinghuaUniversity Press, 2009: 562 (in Chinese). [21] ZHU Y Q, MA B J, JIANG L Y. The elastic elastoplasticand plastic fractal contact models for rough surface[J]. Journal of Xi’an Institute of Technology, 2001,21(2): 150-157 (in Chinese). [22] LI X P, ZHAO G H, LIANG Y M, et al. Fractal modeland simulation of normal contact stiffness between twocylinders’ joint surfaces [J]. Transactions of the ChineseSociety for Agricultural Machinery, 2013, 44(10):277-281 (in Chinese).
|