[1] |
LI J Q, ZHAO Y, LIU B. Exploiting semantic resourcesfor large scale text categorization [J]. Journal of IntelligentInformation Systems, 2012, 39(3): 763-788.
|
[2] |
MIYATO T, DAI A M, GOODFELLOW I. Virtualadversarial training for semi-supervised text classification[EB/OL]. (2016-07-22). https://arxiv.org/abs/1605.07725v1.
|
[3] |
YIN C Y, XIANG J, ZHANG H, et al. A new SVMmethod for short text classification based on semisupervisedlearning [C]//2015 4th International Conferenceon Advanced Information Technology and SensorApplication. Dubai, UAE: IEEE, 2015: 100-103.
|
[4] |
JOHNSON R, ZHANG T. Semi-supervised convolutionalneural networks for text categorization via regionembedding [J]. Advances in Neural InformationProcessing Systems, 2015, 28: 919-927.
|
[5] |
JOHNSON R, ZHANG T. Supervised and semisupervisedtext categorization using LSTM for regionembeddings [C]//Proceedings of the 33rd InternationalConference on Machine Learning. New York, USA:JMLR W&CP, 2016: 1-9.
|
[6] |
SEBASTIANI F. Machine learning in automated textcategorization [J]. ACM Computing Surveys, 2002,34(1): 1-47.
|
[7] |
JOACHIMS T. Transductive inference for text classificationusing support vector machines [C]//Proceedingsof the 16th International Conference on MachineLearning. Bled, Slovenia: [s.n.], 1999: 200-209.
|
[8] |
SIOLAS G, D’ALCH′ E-BUC F. Support vector machinesbased on a semantic kernel for text categorization[C]//Proceedings of the IEEE-INNS-ENNS InternationalJoint Conference on Neuralnetworks. Washington,USA: IEEE, 2000: 205-209.
|
[9] |
BASILI R, CAMMISA M, MOSCHITTI A. Effectiveuse of Wordnet semantics via kernel-basedlearning [C]//Proceedings of the 9th Conference onComputational Natural Language Learning. Ann Arbor,USA: Association for Computational Linguistics,2005: 1-8.
|
[10] |
GABRILOVICH E, MARKOVITCH S. Feature generationfor text categorization using world knowledge[C]//International Joint Conference on Artificial Intelligence.[s.l.]: Morgan Kaufmann Publishers Inc,2005: 1048-1053.
|
[11] |
WANG P, DOMENICONI C. Building semantic kernelsfor text classification using wikipedia [C]//ACMSIGKDD International Conference on Knowledge Discoveryand Data Mining. Las Vegas, USA: ACM, 2008:713-721.
|
[12] |
CHAPELLE O, SCH¨OLKOPF B, ZIEN A. Semisupervisedlearning [M]. London, England: MIT Press,2006.
|
[13] |
SINDHWANI V, KEERTHI S S. Large scale semisupervisedlinear SVMs [C]//International ACM SIGIRConference on Research and Development in InformationRetrieval. Washington, USA: ACM, 2006:477-484.
|
[14] |
SINDHWANI V, KEERTHI S S. Newton methodsfor fast solution of semi-supervised linear SVMs[EB/OL]. (2016-07-22). http: //citeseerx.ist.psu.edu/viewdoc/download.
|
[15] |
LI C H, YANG J C, PARK S C. Text categorization algorithmsusing semantic approaches, corpus-based thesaurusand WordNet [J]. Expert Systems with Applications,2012, 39: 765-772.
|
[16] |
FOX-ROBERTS P, ROSTEN E. Unbiased generativesemi-supervised learning [J]. Journal of MachineLearning Research, 2014, 15: 367-443.
|
[17] |
SHANG F H, JIAO L C, LIU Y Y, et al. Semisupervisedlearning with nuclear norm regularization[J]. Pattern Recognization, 2013, 46(8): 2323-2336.
|
[18] |
WANG J, JEBARA T, CHANG S F. Semi-supervisedlearning using greedy max-cut [J]. Journal of MachineLearning Research, 2013, 14: 729-758.
|
[19] |
CHENG S, SHI Y H, QIN Q D. Particle swarmoptimization based semi-supervised learning on chinesetext categorization [C]//Proceedings of the 2012IEEE Congress on Evolutionary Computation. Brisbane,Australia: IEEE, 2012: 1-8.
|
[20] |
LENG Y, XU X Y, QI G H. Combining active learningand semi-supervised learning to construct SVM classifier[J]. Knowledge-Based Systems, 2013, 44(1): 121-131.
|
[21] |
LI J Q, LIU C C, LIU B, et al. Diversity-aware retrievalof medical records [J]. Compuer in Industries, 2015,69(1): 81-91.
|
[22] |
YANG J M, LIU Y N, ZHU X D, et al. A new featureselection based on comprehensive measurement bothin inter-category and intra-category for text categorization[J]. Information Processing and Management,2012, 48(4): 741-754.
|
[23] |
BREVE F, ZHAO L, QUILES M, et al. Particlecompetition and cooperation in networks for semisupervisedlearning [J]. IEEE Transactions on Knowledgeand Data Engineering, 2011, 24(9): 1686-1698.
|
[24] |
LI J Q, WANG F. Semi-supervised learning via meanfield methods [J]. Neurocomputing, 2016, 177: 385-393.
|