[1] |
XU R. Survey of clustering algorithms [J]. IEEE Transactionon Neural Networks, 2005, 16(3): 645-678.
|
[2] |
WANG L, LECKIE C, RAMAMOHANARAOK, et al.Automatically determining the number of clusters inunlabeled data sets [J]. IEEE Transaction on Knowledgeand Data Engineering, 2009, 21(3): 335-350.
|
[3] |
CHEN C, PAU L, WANG P. Handbook of patternrecognition and computer vision [M]. Singapore:World Scientific, 1993.
|
[4] |
CALI ′NSKI R, HARABASZ J. A denrite methodfor cluster analysis [J]. Communications in Statistics,1974, 3(1): 1-27.
|
[5] |
HARTIGAN J A. Clustering algorithms [M]. Toronto:Wiley, 1975.
|
[6] |
KRZANOWSKI W J, LAI Y T. A criterion for determiningthe number of clusters in a dataset [J]. Biometrics,1985, 44(1): 23-34.
|
[7] |
SUGAR C A, JAMES G M. Finding the number ofclusters in a dataset: An information theoretic approach[J]. Journal of American Statistical Association,2003, 98: 750-763.
|
[8] |
ROUSSEEUW P J. Silhouettes: A graphical aid tothe interpretation and validation of cluster analysis [J].Journal of Computational and Applied Mathematics,1987, 20: 53-65.
|
[9] |
TIBSHIRANI R, WALTHER G, HASTIE T. Estimatingthe number of clusters in a dataset via the gapstatistic [J]. Journal of the Royal Statistical Society,Series B, 2001, 63: 411-423.
|
[10] |
PERMUTER H, FRANCOS J, JERMYN I H. Gaussianmixture models of texture and colour for imagedatabase retrieval [C]//Proceedings of ICASSP. HongKong, China: IEEE, 2003: 569-572.
|
[11] |
VERMA B, RAHMAN A. Cluster-oriented ensembleclassifier: Impact of multicluster characterization onensemble classifier learning [J]. IEEE Transaction onKnowledge and Data Engineering, 2012, 24(4): 605-618.
|
[12] |
WANG J H. Consistent selection of the number of clustersvia cross-validation [J]. Biometrika, 2010, 97(4):893-904.
|
[13] |
EVERITT B, LANDAU S, LEESE M. Cluster analysis[M]. London: Arnold, 2001.
|
[14] |
KIRKPATRICK S, GELATT C D, VECCHI J MP. Optimization by simulated annealing [J]. Science,1983, 220(4598): 671-681.
|
[15] |
BERTSIMAS D, TSITSIKLIS J. Simulated annealing[J]. Statistical Science, 1993, 8(1): 10-15.
|
[16] |
CHIB S, GREENBERG E. Understanding theMetropolis-Hastings algorithm [J]. American Statistician,1995, 49(4): 327-335.
|
[17] |
FAIGLE U, KERNW. Note on the convergence of simulatedannealing algorithms [J]. SIAM Journal of Controland Optimization, 1991, 29(1): 153-159.
|
[18] |
ARTHUR D, VASSILVITSKII S. k-means++: Theadvantage of careful seeding [C]//Proceedings of theEighteenth Annual ACM-SIAM Symposium on DiscreteAlgorithms. New Orleans, Louisiana: ACM,2007: 1027-1035.
|
[19] |
MCALLESTER D, SELMAN B, KAUTZ H. Evidencefor invariants in local search [C]//Proceedings of the14th National Conference on Artificial Intelligence.Menlo Park, USA: AAAI Press, 1997: 321-326.
|
[20] |
YANG Z W, FANG T. On the accuracy of image normalizationby Zernike moments [J]. Image and VisionComputing, 2010, 28: 403-413.
|
[21] |
LICHMAN M. UCI machine learning database[DB/OL]. (2010-02-02). http://archive.ics.uci.edu/ml/.
|
[22] |
BREITENBACH M, GRUDIC G E. Clusteringthrough ranking on manifolds [C]//Proceedings of22nd International Conference on Machine Learning.Bonn, Germany: ACM, 2005: 73-80.
|
[23] |
MANJUNATH B S, MA W Y. Texture features forbrowsing and retrieval of image data [J]. IEEE Transactionon Pattern Analysis and Machine Intelligence,1996, 18(8): 837-842.
|