上海交通大学学报(英文版) ›› 2015, Vol. 20 ›› Issue (4): 489-494.doi: 10.1007/s12204-015-1655-2
WANG Kai1,2 (王 凯), LUO Hao1* (罗 浩), KRUEGER M1,DING S X1, YANG Xu3* (杨 旭), JEDSADA S4
出版日期:
2015-08-29
发布日期:
2015-08-05
通讯作者:
LUO Hao (罗 浩), YANG Xu (杨 旭)(The two authors contributed equally to this work.)
E-mail: hao.luo@uni-due.de, yangxu@ustb.edu.cn
WANG Kai1,2 (王 凯), LUO Hao1* (罗 浩), KRUEGER M1,DING S X1, YANG Xu3* (杨 旭), JEDSADA S4
Online:
2015-08-29
Published:
2015-08-05
Contact:
LUO Hao (罗 浩), YANG Xu (杨 旭)(The two authors contributed equally to this work.)
E-mail: hao.luo@uni-due.de, yangxu@ustb.edu.cn
摘要: Wind energy is one of the widely applied renewable energies in the world. Wind turbine as the main wind energy converter at present has very complex technical system containing a huge number of components, actuators and sensors. However, despite of the hardware redundancy, sensor faults have often affected the wind turbine normal operation and thus caused energy generation loss. In this paper, aiming at the wind turbine hydraulic pitch system, data-driven design of process monitoring (PM) and diagnosis has been realized in the wind turbine benchmark. Fault tolerant control (FTC) strategies focused on sensor faults have also been presented here, where with the implementation of soft sensor the sensor fault can be handled and the performance of the system is improved. The performance of this method is demonstrated with the wind turbine benchmark provided by MathWorks.
中图分类号:
WANG Kai1,2 (王 凯), LUO Hao1* (罗 浩), KRUEGER M1,DING S X1, YANG Xu3* (杨 旭), JEDSA. Data-Driven Process Monitoring and Fault Tolerant Control in Wind Energy Conversion System with Hydraulic Pitch System[J]. 上海交通大学学报(英文版), 2015, 20(4): 489-494.
WANG Kai1,2 (王 凯), LUO Hao1* (罗 浩), KRUEGER M1,DING S X1, YANG Xu3* (杨 旭), JEDSADA S4. Data-Driven Process Monitoring and Fault Tolerant Control in Wind Energy Conversion System with Hydraulic Pitch System[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 489-494.
[1] Burton T, Jenkins N, Sharpe D, et al. Wind energy handbook [M]. Chichester: John Wiley & Sons, 2011. [2] Wei X, VerhaegenM, Van Den Engelen T. Sensor fault diagnosisof windturbinesfor fault tolerant [C]//Proceedings of the 17th World Congress, The International Federation of Automatic Control. Seoal, Korea:IFAC, 2008: 3222-3227. [3] Ding S X, Zhang P, Naik A, et al. Subspace method aided data-driven design of fault detection and isolation systems [J]. Journal of Process Control, 2009,19(9): 1496-1510. [4] Ding S X. Model-based fault diagnosis techniques [M].Berlin: Springer-Verlag, 2013. [5] Ding S X. Data-driven design of fault diagnosis and fault-tolerant control systems [M]. Berlin: Springer-Verlag, 2014. [6] Ding S X, Yang Y, Zhang Y, et al. Data-driven realizations of kernel and image representations and their application to fault detection and control system design [J]. Automatica, 2014, 50(10): 2615-2623. [7] Blesa J, Rotondo D, Puig V, et al. FDI and FTC of wind turbines using the interval observer approach and virtual actuators/sensors [J]. Control Engineering Practice, 2014, 24: 138-155. [8] Miller S. Wind turbine model [EB/OL].(2015-03-17). http: // www.mathworks.de / matlabcentral/fileexchange/ 25752- wind-turbine-model, 2013. |
[1] | SHAN Rui (山蕊), JIANG Lin (蒋林), WU Haoyue (吴昊玥), HE Feilong (贺飞龙), LIU Xinchuang (刘新闯). Dynamical Self-Reconfigurable Mechanism for Data-Driven Cell Array[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 511-521. |
[2] | KOU Haixia, AN Zongwen, MA Qiang, GUO Xu. Lifetime Prediction of Wind Turbine Blade Based on Full-Scale Fatigue Testing [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 755-761. |
[3] | ZHENG Yuqiao, ZHANG Lu, PAN Yongxiang, HE Zhe . Multi-Objective Structural Optimization of a Wind Turbine Tower[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 538-544. |
[4] | YU Zelin, SUN Pengwen, WANG Dong. Fatigue Life Prediction for Flange Connecting Bolts of Wind Turbine Tower[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 526-530. |
[5] | GUO Wenqiang (郭文强), SUN Pengwen (孙鹏文), NIU Lei (牛磊), WANG Zongtao (王宗涛). Fatigue Life Analysis of Longitudinal Welding Seam for Wind Turbine Tower[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 261-265. |
[6] | CEN Haitang (岑海堂), WEI Ruitao (魏瑞涛), TIAN Wenliang (田文良), HUANG Jinlei (黄金磊), NA. Finite Element Simulation Study on Blade Coating of Wind Turbine[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 223-229. |
[7] | LIU Jia (刘佳), TIAN Rui (田瑞), NIE Jing (聂晶). Design of Wind Turbine Blade for Solar Chimney Power Plant[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 820-826. |
[8] | MENG Long (孟龙), HE Yanping (何炎平), ZHOU Tao (周涛), ZHAO Yongsheng (赵永生), LIU Yadon. Research on Dynamic Response Characteristics of 6MW Spar-Type Floating Offshore Wind Turbine[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(4): 505-. |
[9] | ABBAS Zulkarnain, ABBAS Saqlain, BUTT Zubair, PASHA Riffat Asim. Design and Parametric Investigation of Horizontal Axis Wind Turbine[J]. sa, 2018, 23(3): 345-. |
[10] | WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健). Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine[J]. 上海交通大学学报(英文版), 2017, 22(4): 466-473. |
[11] | ZHAO Yongsheng (赵永生), YANG Jianmin (杨建民), HE Yanping* (何炎平), GU Mintong (顾敏童). Dynamic Response Analysis of a Multi-Column Tension-Leg-Type Floating Wind Turbine Under Combined Wind and Wave Loading[J]. 上海交通大学学报(英文版), 2016, 21(1): 103-111. |
[12] | AN Zong-wen1* (安宗文), ZHANG Yu1 (张宇), WANG Zhong-lai2 (汪忠来). Reliability Copula Model for Wind Turbine Gearbox Based on Failure Correlation[J]. 上海交通大学学报(英文版), 2015, 20(3): 312-316. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 212
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 713
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||