[1] |
Borman S, Strevenson R L. Super-resolution from image sequences: A review [C]//Proceeding of 41st IEEE Computer Society Midwest Symposium on Circuits and Systems. Indiana, USA: IEEE, 1998: 374-378.
|
[2] |
Park S C, Park M K, Kang M G. Super-resolution image reconstruction: A technical overview [J]. IEEE Signal Processing Magazine, 2003, 20 (3): 21-36.
|
[3] |
Baker S, Kanade T. Limits on super-resolution and how to break them [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2003, 24(9): 1167-1183.
|
[4] |
Freeman W T, Pasztor E C, Carmichael O T.Learning low-level vision [J]. International Journal of Computer Vision, 2000, 40(1): 25-47.
|
[5] |
Freeman W T, Jones T R, Pasztor E C. Examplebased super-resolution [J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65.
|
[6] |
Chang H, Yeung D Y, Xiong Y M. Super-resolution through neighbor embedding [C]//Proceedings of 17th IEEE Computer Society Conference on Computer Vision Pattern Recognition. Washington, DC, USA:IEEE, 2004: 275-282.
|
[7] |
Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2002,290(5500): 2323-2326.
|
[8] |
Geng B, Tao D C. Ensemble manifold regularization [C]//Proceedings of 22nd IEEE Computer Society Conference on Computer Vision Pattern Recognition.Miami, FL: IEEE, 2009: 2396-2402.
|
[9] |
Li X L, Lin S, Yan S C, et al. Discriminant locally linear embedding with high-order tensor data [J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 2008, 38(2): 342-352.
|
[10] |
Zhou T Y, Tao D C, Wu X D. Manifold elastic net:A unified framework for sparse dimension reduction [J]. Data Mining Knowledge Discovery, 2011, 22(3):340-371.
|
[11] |
Shan Q, Li Z R, Jia J Y, et al. Fast image/video upsampling [J]. ACM Transactions on Graphics, 2008,27(5): 1-8.
|
[12] |
Tang Y, Yan P K, Yuan Y, et al. Single-image superresolution via local learning [J]. International Journal of Machine Learning and Cybernetics, 2011, 2 (1): 15-23.
|
[13] |
Su K, Tian Q, Xue Q, et al. Neighborhood issue in single-frame image super-resolution [C]//Proceedings of 6th IEEE International Conference on Multimedia and Expo. Amsterdam, the Netherlands: IEEE, 2005:1122-1125.
|
[14] |
Coomans D, Massart D L. Alternative K-nearest neighbor rules in supervised pattern recognition. Part 1. K-nearest neighbor classification by using alternative voting rules [J]. Analytica Chimica Acta, 1982,136: 15-27.
|
[15] |
Lee D D, Seung H S. Algorithms for non-negative matrix factorization [M]. Cambridge, MA, USA: MIT Press, 2001.
|
[16] |
Liu Wei-xiang, Zheng Nan-ning, You Qu-bo. Nonnegative matrix factorization and its applications in pattern recognition [J]. Chinese Science Bulletin, 2006,51(3): 241-250 (in Chinese).
|
[17] |
Yang J C,Wright J, Huang T S, et al. Image superresolution via sparse representation [J]. IEEE Transactions on Image Processing, 2010, 19(11): 1-8.
|
[18] |
Buades A, Coll B, Morel J M. Nonlocal image and movie denoising [J]. International Journal of Computer Vision, 2008, 76(2): 123-139.
|
[19] |
Chan T M, Zhang J P, Pu J, et al. Neighbor embedding based super-resolution algorithm through edge detection and feature selection [J]. Pattern Recognition Letters, 2009, 30(5): 494-502.
|
[20] |
Zhang K B, Gao X B, Li X L, et al. Partially supervised neighbor embedding for example-based image super-resolution [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(2): 230-238.
|