上海交通大学学报(英文版) ›› 2012, Vol. 17 ›› Issue (5): 545-551.doi: 10.1007/s12204-012-1323-8
XIN Hao1 (辛浩), HAN Qiang2,3* (韩强)
出版日期:
2012-10-30
发布日期:
2012-11-16
通讯作者:
HAN Qiang2,3* (韩强)
E-mail:emqhan@scut.edu.cn
XIN Hao1 (辛浩), HAN Qiang2,3* (韩强)
Online:
2012-10-30
Published:
2012-11-16
Contact:
HAN Qiang2,3* (韩强)
E-mail:emqhan@scut.edu.cn
摘要: Axial buckling behavior of perfect and defective zigzag single-walled carbon nanotubes (SWCNTs) is studied by molecular dynamics (MD) simulations. Different effects of three typical categories of defect on the axial buckling properties of SWCNTs are investigated. MD simulation results show that the buckling behavior of defective tubes is quite different from the perfect tube. The critical buckling load of zigzag SWCNTs is significantly reduced with different defect appeared in the tube wall, and the effective elastic modulus are also slightly but distinguishingly influenced by individual defect. It is revealed that an Stone-Thrower-Wales defect could induce greater decrease of the rigidity a single vacancy defect or a double vacancies one. The harmful effects of defects do not depend simply on the size of the defective area, but related strongly to the buckling modes of the defective SWCNTs which specifically differ from each other due to the different defect structures.
中图分类号:
XIN Hao1 (辛浩), HAN Qiang2,3* (韩强). Mechanical Properties of Perfect and Defective Zigzag Single-Walled Carbon Nanotubes Under Axial Compression[J]. 上海交通大学学报(英文版), 2012, 17(5): 545-551.
XIN Hao1 (辛浩), HAN Qiang2,3* (韩强). Mechanical Properties of Perfect and Defective Zigzag Single-Walled Carbon Nanotubes Under Axial Compression[J]. Journal of shanghai Jiaotong University (Science), 2012, 17(5): 545-551.
[1] Krishnan A, Dujardin E, Ebbesen T W, et al.Young’s modulus of single-walled nanotubes [J]. Physical Review B, 1998, 58(20): 14013-14019. [2] Lu J P. Elastic properties of carbon nanotubes and nanoropes [J]. Physical Review Letters, 1997, 79(7):1297-1300. [3] Hashimoto A, Suenaga K, Gloter A, et al. Direct evidence for atomic defects in graphene layers [J].Nature, 2004, 430(7002): 870-873. [4] Chowdhury S C, Okabe T. Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method [J]. Composites. Part A: Applied Science and Manufacturing, 2007, 38(3): 747-754. [5] Xin H, Han Q, Yao X H. Buckling and axially compressive properties of perfect and defective singlewalled carbon nanotubes [J]. Carbon, 2007, 45(13):2486-2495. [6] Xin H, Han Q, Yao X H. Buckling of defective singlewalled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation [J].Composites Science and Technology, 2008, 68(7-8):1809-1814. [7] Xin H, Han Q. The strain rate effect of perfect and defective single-walled carbon nanotubes under axial compression [J]. Journal of Computational and Theoretical Nanoscience, 2012, 9(3): 371-378. [8] Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films [J]. Physical Review B, 1990, 42(15):9458-9471. [9] Mayo S L, Olafson B D, GoddardW A III. Dreiding:a generic force field for molecular simulations [J].Journal of Physical Chemistry, 1990, 94(26): 8897-8909. [10] Sears A, Batra R C. Macroscopic properties of carbon nanotubes from molecular- mechanics simulations [J]. Physical Review B, 2004, 69(23): 235406-235415. [11] Walther J H, Jaffe R, Halicioglu T, et al. Carbon nanotubes in water: Structural characteristics and energetics [J]. Journal of Physical Chemistry B, 2001,105(41): 9980-9987. [12] Rappe A K, Casewit C J, Golwell K S, et al. Uff,a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. Journal of the American Chemical Society, 1992, 114(25): 10024-10035. [13] Hess B, Carsten K, Lindahl E, et al. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation [J]. Journal of Chemical Theory and Computation, 2008, 4(3): 435-447. |
[1] | JIANG Taoran(姜陶然), YU Zheyuan (俞哲元), YUAN Jie (袁捷), XU Liang (徐梁), DUAN Huichuang (段惠川), ZHOU Sizheng (周思政), CAO Dejun(曹德君), WEI Min (韦敏). Workflow and Principles for Precisely Designing a Custom-Made Polyetheretherketone Implant Applied in Irregular Craniofacial Bone Defects[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 404-410. |
[2] | KAN Tianyou(阚天佑), XIE Kai(谢凯), QU Yang(曲扬), AI Songtao (艾松涛), JIANG Wenbo (姜闻博), WU Haishan (吴海山), WANG Liao(王燎), YAN Mengning(严孟宁). 3D-Printed Porous Titanium Augments for Reconstruction of Massive Bone Defect in Complex Revision Total Knee Arthroplasty: Implant Design and Surgical Technique[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 334-338. |
[3] | WU Ying (吴莹), LOU Lin (娄琳), WANG Jun (汪军). Global Fabric Defect Detection Based on Unsupervised Characterization[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 231-238. |
[4] | LI Dan (李丹), NIU Zhongbin (牛中彬), PENG Dongxu (彭冬旭) . Magnetic Tile Surface Defect Detection Based on Texture Feature Clustering[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 663-670. |
[5] | ZHAO Shuaishuaia (赵帅帅), SHAO Chenga (邵成), ZAHIRI Saeida,ZHAO Changyingb (赵长颖), B. Thermal Transport in Nanoporous Yttria-Stabilized Zirconia by Molecular Dynamics Simulation[J]. sa, 2018, 23(1): 38-44. |
[6] | RONG Hui (荣辉), QIAN Chun-xiang (钱春香). Development of Microbe Cementitious Material in China[J]. 上海交通大学学报(英文版), 2012, 17(3): 350-355. |
[7] | DONG Yue-fu (董跃福), HU Guang-hong (胡广洪), ZHANG Luo-lian (张罗莲), HU Yang. Accurate 3D Reconstruction of Subject-Specific Knee Finite Element Model to Simulate the Articular Cartilage Defects[J]. 上海交通大学学报(英文版), 2011, 16(5): 620-627. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 316
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1440
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||