[1] Gaber M M, Zaslavsky A, Krishnaswamy S. Mining data streams: A review [J]. ACM SIGMOD Record,2005, 34(2): 18-26.
[2] Stonebraker M, Cetintemel U, Zdonik S. The 8 requirements of real-time stream processing [J]. ACM SIGMOD Record, 2005, 34(4): 42-47.
[3] Han J, Kamber M. Data mining: Concepts and techniques [M]. San Francisco, USA: Morgan Kaufmann Publishers, 2006.
[4] Domingos P, Hulten G. Mining high-speed data streams [C]//Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. Boston, USA: ACM, 2000: 71-80.
[5] Kirkby R. Improving Hoeffding trees [D]. Hamilton New Zealand: Department of Computer Science, University of Waikato, 2007.
[6] Jin R, Agrawal G. Efficient decision tree construction on streaming data [C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Washington, USA:ACM, 2003: 571-576.
[7] Bennett G. Probability inequalities for the sum of independent random variables [J]. Journal of the American Statistical Association, 1962, 57(297): 33-45.
[8] Hoeffding W. Probability inequalities for sums of bounded random variables [J]. Journal of the American Statistical Association, 1963, 58(301): 13-30.
[9] Audibert J Y, Munos R, Szepesv´ari C. Tuning bandit algorithms in stochastic environments [C]//Proceedings of the 18th International Conference
on Algorithmic Learning Theory. Sendai, Japan: LNCS, 2007: 150-165.
[10] Shivaswamy P K, Jebara T. Empirical Bernstein boosting [J]. Journal of Machine Learning Research, 2010, 9: 733-740.
[11] Cesa-Bianchi N, Conconi A, Gentile C. A secondorder perceptron algorithm [J]. SIAM Journal on Computing, 2005, 34(3): 640-668.
[12] Crammer K, Mohri M, Pereira F. Gaussian margin machines [C]// Proceedings of the 12th International Conference on Artificial Intelligence and Statistics.
Florida, USA: JMLR W&CP, 2009: 105-112.
[13] Mnih V, Szepesv´ari C, Audibert J Y. Empirical Bernstein stopping [C]//Proceedings of the 25th International Conference on Machine Learning. Helsinki,
Finland: ACM, 2008: 672-679.
[14] Jin R, Hong H, Wang H, et al. Computing label-constraint reachability in graph databases [C]//Proceedings of the International Conference on
Management of Data. Indiana, USA: ACM, 2010: 123-134.
[15] Heidrich-Meisner V, Igel C. Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search [C]//Proceedings of the 26th Annual International
Conference on Machine Learning. Quebec, Canada: ACM, 2009: 401-408. |