基于卷积神经网络与轻量级梯度提升树组合模型的电力行业短期以电折碳方法
|
|
曾金灿, 何耿生, 李姚旺, 杜尔顺, 张宁, 朱浩骏
|
A Short-Term Carbon Emission Accounting Method for Power Industry Using Electricity Data Based on a Combined Model of CNN and LightGBM
|
|
ZENG Jincan, HE Gengsheng, LI Yaowang, DU Ershun, ZHANG Ning, ZHU Haojun
|
|
表4 基于小时数据不同K折取样下不同模型的测算效果
|
Tab.4 Calculation performance of different models based on hourly data with different K-fold samplings
|
|
| K折 | 模型方法 | 评估指标 | | eRMSE | eMAPE | R2 | | K=1 | Ridge | 1.480 | 7.210 | 0.870 | | CNN | 1.520 | 25.190 | 0.859 | | LightGBM | 1.550 | 7.680 | 0.857 | | CNN-LightGBM | 1.450 | 7.060 | 0.876 | | K=2 | Ridge | 1.476 | 7.189 | 0.873 | | CNN | 1.584 | 28.290 | 0.854 | | LightGBM | 1.547 | 7.712 | 0.861 | | CNN-LightGBM | 1.529 | 7.562 | 0.864 | | K=3 | Ridge | 1.453 | 7.077 | 0.879 | | CNN | 1.483 | 27.723 | 0.874 | | LightGBM | 1.536 | 7.674 | 0.864 | | CNN-LightGBM | 1.414 | 6.869 | 0.885 | | K=4 | Ridge | 1.550 | 7.717 | 0.857 | | CNN | 1.501 | 25.435 | 0.867 | | LightGBM | 1.551 | 7.717 | 0.858 | | CNN-LightGBM | 1.445 | 7.036 | 0.876 | | K=5 | Ridge | 1.462 | 7.136 | 0.873 | | CNN | 1.506 | 27.291 | 0.866 | | LightGBM | 1.523 | 7.592 | 0.862 | | CNN-LightGBM | 1.434 | 7.008 | 0.878 | | K平均 | Ridge | 1.472 | 7.163 | 0.873 | | CNN | 1.519 | 26.785 | 0.865 | | LightGBM | 1.542 | 7.675 | 0.861 | | CNN-LightGBM | 1.455 | 7.100 | 0.876 |
|
|
|