基于卷积神经网络与轻量级梯度提升树组合模型的电力行业短期以电折碳方法
曾金灿, 何耿生, 李姚旺, 杜尔顺, 张宁, 朱浩骏

A Short-Term Carbon Emission Accounting Method for Power Industry Using Electricity Data Based on a Combined Model of CNN and LightGBM
ZENG Jincan, HE Gengsheng, LI Yaowang, DU Ershun, ZHANG Ning, ZHU Haojun
表4 基于小时数据不同K折取样下不同模型的测算效果
Tab.4 Calculation performance of different models based on hourly data with different K-fold samplings
K 模型方法 评估指标
eRMSE eMAPE R2
K=1 Ridge 1.480 7.210 0.870
CNN 1.520 25.190 0.859
LightGBM 1.550 7.680 0.857
CNN-LightGBM 1.450 7.060 0.876
K=2 Ridge 1.476 7.189 0.873
CNN 1.584 28.290 0.854
LightGBM 1.547 7.712 0.861
CNN-LightGBM 1.529 7.562 0.864
K=3 Ridge 1.453 7.077 0.879
CNN 1.483 27.723 0.874
LightGBM 1.536 7.674 0.864
CNN-LightGBM 1.414 6.869 0.885
K=4 Ridge 1.550 7.717 0.857
CNN 1.501 25.435 0.867
LightGBM 1.551 7.717 0.858
CNN-LightGBM 1.445 7.036 0.876
K=5 Ridge 1.462 7.136 0.873
CNN 1.506 27.291 0.866
LightGBM 1.523 7.592 0.862
CNN-LightGBM 1.434 7.008 0.878
K平均 Ridge 1.472 7.163 0.873
CNN 1.519 26.785 0.865
LightGBM 1.542 7.675 0.861
CNN-LightGBM 1.455 7.100 0.876