基于卷积神经网络与轻量级梯度提升树组合模型的电力行业短期以电折碳方法
曾金灿, 何耿生, 李姚旺, 杜尔顺, 张宁, 朱浩骏

A Short-Term Carbon Emission Accounting Method for Power Industry Using Electricity Data Based on a Combined Model of CNN and LightGBM
ZENG Jincan, HE Gengsheng, LI Yaowang, DU Ershun, ZHANG Ning, ZHU Haojun
表3 基于日度数据不同K折取样下不同模型的测算效果
Tab.3 Calculation performance of different models based on daily data with different K-fold samplings
K 模型方法 评估指标
eRMSE eMAPE R2
K=1 Ridge 0.315 6.122 0.852
CNN 0.316 21.749 0.852
LightGBM 0.320 6.348 0.847
CNN-LightGBM 0.293 5.687 0.872
K=2 Ridge 0.331 6.785 0.832
CNN 0.348 22.810 0.814
LightGBM 0.337 7.046 0.826
CNN-LightGBM 0.331 6.857 0.832
K=3 Ridge 0.326 6.503 0.835
CNN 0.378 24.190 0.778
LightGBM 0.337 6.914 0.823
CNN-LightGBM 0.300 5.929 0.860
K=4 Ridge 0.339 6.805 0.830
CNN 0.346 23.370 0.823
LightGBM 0.341 7.077 0.828
CNN-LightGBM 0.310 6.178 0.858
K=5 Ridge 0.335 6.577 0.819
CNN 0.356 21.831 0.796
LightGBM 0.340 6.930 0.813
CNN-LightGBM 0.323 6.555 0.832
K平均 Ridge 0.329 6.559 0.833
CNN 0.349 22.790 0.812
LightGBM 0.335 6.863 0.827
CNN-LightGBM 0.311 6.241 0.851